[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,84 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" UT for set_stop_value """
import paddle
from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse
input_ids = []
image_type_ids = []
grid_thw = []
def split_grid(origin_grid_thw):
# 划分grid_thw该函数用于视频场景
# origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12]
grid_thw = []
for t, h, w in origin_grid_thw:
if t > 2:
num_groups = t // 2
remainder = t % 2
for _ in range(num_groups):
grid_thw.extend([2, h, w])
if remainder > 0:
grid_thw.extend([remainder, h, w])
else:
grid_thw.extend([t, h, w])
return grid_thw
if __name__ == "__main__":
grid_thw = [[6, 20, 20], [6, 40, 20]]
grid_thw = split_grid(grid_thw)
image_bs = len(grid_thw) // 3
image_type_ids = [0] * image_bs
# 随机拼接input_ids: [txt0+img1+tx1+img2]
input_ids = [2] * 19
img1 = [100295] * 100 * 3
txt1 = [3] * 19
img2 = [100295] * 200 * 3
input_ids.extend(img1)
input_ids.extend(txt1)
input_ids.extend(img2)
split_fuse_img_size = 16
split_fuse_text_size = 384 # 1024
seq_len = len(input_ids)
input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64")
image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32")
is_image_token = paddle.where(input_ids_tensor == 100295, 1, 0)
image_token_sum = paddle.cumsum(is_image_token) # 前缀和
image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum])
grid_thw_tensor = paddle.to_tensor(grid_thw, dtype="int64")
image_chunk_selections, split_fuse_cur_seq_lens = get_mm_split_fuse(
input_ids_tensor.cpu(),
image_type_ids_tensor.cast("int32").cpu(),
image_token_sum.cast("int32").cpu(),
grid_thw_tensor.cpu(),
100295,
image_bs,
0,
seq_len,
split_fuse_img_size,
split_fuse_text_size,
2048,
)
print("seq_len: ", seq_len)
print("grid_thw", grid_thw_tensor)
print("image_chunk_selections: ", image_chunk_selections)
print("split_fuse_cur_seq_lens: ", split_fuse_cur_seq_lens)