[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

279
fastdeploy/worker/utils.py Normal file
View File

@@ -0,0 +1,279 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
from dataclasses import dataclass
from dataclasses import field
from typing import List
@dataclass
class PredictorArgument:
model_name_or_path: str = field(
default=None, metadata={"help": "The directory of model."})
model_prefix: str = field(
default="model", metadata={"help": "the prefix name of static model"})
src_length: int = field(
default=None, metadata={"help": "The max length of source text."})
min_length: int = field(default=1,
metadata={"help": "the min length for decoding."})
max_length: int = field(default=1024,
metadata={"help": "the max length for decoding."})
top_k: int = field(default=0,
metadata={"help": "top_k parameter for generation"})
top_p: float = field(default=0.7,
metadata={"help": "top_p parameter for generation"})
temperature: float = field(
default=0.95,
metadata={"help": "temperature parameter for generation"})
repetition_penalty: float = field(
default=1.0,
metadata={"help": "repetition penalty parameter for generation"})
device: str = field(default="gpu", metadata={"help": "Device"})
dtype: str = field(default=None, metadata={"help": "Model dtype"})
lora_path: str = field(
default=None,
metadata={"help": "The directory of LoRA parameters. Default to None"})
export_precache: bool = field(
default=False,
metadata={"help": "whether use prefix weight to do infer"})
prefix_path: str = field(
default=None,
metadata={
"help":
"The directory of Prefix Tuning parameters. Default to None"
})
decode_strategy: str = field(
default="sampling",
metadata={
"help":
"the decoding strategy of generation, which should be one of "
"['sampling', 'greedy_search', 'beam_search']. Default to sampling"
},
)
use_flash_attention: bool = field(
default=False,
metadata={"help": "Whether to use flash attention"},
)
mode: str = field(
default="dynamic",
metadata={
"help":
"the type of predictor, it should be one of [dynamic, static]"
})
inference_model: bool = field(
default=False,
metadata={"help": "whether use InferenceModel to do generation"})
quant_type: str = field(
default="",
metadata={
"help":
"Quantization type. Supported values: a8w8, a8w8c8, a8w8_fp8, "
"a8w8c8_fp8, weight_only_int4, weight_only_int8"
},
)
avx_model: bool = field(
default=False,
metadata={
"help":
"whether use AvxModel to do generation when using cpu inference"
})
avx_type: str = field(
default=None,
metadata={
"help":
"avx compute type. Supported values: fp16, bf16,fp16_int8\
fp16: first_token and next_token run in fp16\
fp16_int8 : first_token run in fp16, next token run in int8"
},
)
avx_cachekv_type: str = field(
default="fp16",
metadata={"help": "avx cachekv type. Supported values: fp16,int8"},
)
batch_size: int = field(default=1,
metadata={"help": "The batch size of data."})
benchmark: bool = field(
default=False,
metadata={
"help":
"If benchmark set as `True`, we will force model decode to max_length, "
"which is helpful to compute throughput. "
},
)
use_fake_parameter: bool = field(
default=False,
metadata={"help": "use fake parameter, for ptq scales now."})
block_attn: bool = field(default=False,
metadata={"help": "whether use block attention"})
block_size: int = field(default=64,
metadata={"help": "the block size for cache_kvs."})
cachekv_int8_type: str = field(
default=None,
metadata={
"help":
"If cachekv_int8_type set as `dynamic`, cache kv would be quantized to "
"int8 dynamically. If cachekv_int8_type set as `static`, cache kv would "
"be quantized to int8 Statically."
},
)
append_attn: bool = field(
default=False, metadata={"help": "whether use append attention"})
chat_template: str = field(
default=None,
metadata={
"help":
"the path of `chat_template.json` file to handle multi-rounds conversation. "
"If is None(do not set --chat_template argument), it will use the default `chat_template.json`;"
"If is equal with `model_name_or_path`, it will use the default loading; "
"If is directory, it will find the `chat_template.json` under the directory; If is file, it will load it."
"If is none string, it will not use chat_template.json."
},
)
total_max_length: int = field(
default=4096,
metadata={
"help":
"Super parameter. Maximum sequence length(encoder+decoder)."
})
speculate_method: str = field(
default=None,
metadata={
"help":
"speculate method, it should be one of ['None', 'inference_with_reference', 'eagle', 'mtp']"
},
)
speculate_max_draft_token_num: int = field(
default=1,
metadata={
"help": "the max length of draft tokens for speculate method."
},
)
speculate_max_ngram_size: int = field(
default=1,
metadata={"help": "the max ngram size of speculate method."})
speculate_verify_window: int = field(
default=2,
metadata={
"help": "the max length of verify window for speculate method."
})
speculate_max_candidate_len: int = field(
default=5, metadata={"help": "the max length of candidate tokens."})
draft_model_name_or_path: str = field(
default=None,
metadata={"help": "The directory of eagle or draft model"})
draft_model_quant_type: str = field(
default="",
metadata={
"help": "Draft model quantization type. Reserved for future"
},
)
return_full_hidden_states: bool = field(
default=False, metadata={"help": "whether return full hidden_states"})
mla_use_matrix_absorption: bool = field(
default=False,
metadata={"help": "implement mla with matrix-absorption."})
weightonly_group_size: int = field(
default=-1, metadata={"help": "the max length of candidate tokens."})
weight_block_size: List[int] = field(
default_factory=lambda: [128, 128],
metadata={
"help":
"Quantitative granularity of weights. Supported values: [128 128]"
},
)
moe_quant_type: str = field(
default="",
metadata={
"help":
"Quantization type of moe. Supported values: weight_only_int4, weight_only_int8"
},
)
output_via_mq: bool = field(
default=True,
metadata={
"help": "Controls whether the message queue is enabled for output"
},
)
dynamic_insert: bool = field(
default=False, metadata={"help": "whether use dynamic insert"})
total_request_num: int = field(
default=None, metadata={"help": "The total number of request data"})
def __post_init__(self):
if self.speculate_method is not None:
self.append_attn = True
if self.append_attn:
self.block_attn = True
if self.block_attn:
self.inference_model = True
assert self.max_length < self.total_max_length, "max_length should smaller than total_max_length."
if self.src_length is None:
self.src_length = self.total_max_length - self.max_length
# update config parameter for inference predictor
if self.decode_strategy == "greedy_search":
self.top_p = 0.0
self.temperature = 1.0
@dataclass
class ModelArgument:
model_type: str = field(
default=None,
metadata={
"help":
"the type of the model, which can be one of ['gpt-3', 'ernie-3.5-se', 'llama-img2txt']"
},
)
data_file: str = field(default=None,
metadata={"help": "data file directory"})
output_file: str = field(
default="output.json",
metadata={"help": "predict result file directory"})
def check_safetensors_model(model_dir):
"""Check whther the model is safetensors format"""
model_files = list()
all_files = os.listdir(model_dir)
for x in all_files:
if x.startswith("model") and x.endswith(".safetensors"):
model_files.append(x)
is_safetensors = len(model_files) > 0
if not is_safetensors:
return False
if len(model_files) == 1 and model_files[0] == "model.safetensors":
return True
try:
# check all the file exists
safetensors_num = int(
model_files[0].strip(".safetensors").split("-")[-1])
flags = [0] * safetensors_num
for x in model_files:
current_index = int(x.strip(".safetensors").split("-")[1])
flags[current_index - 1] = 1
assert (
sum(flags) == safetensors_num
), f"Number of safetensor files should be {len(model_files)}, but now it's {sum(flags)}"
except Exception as e:
raise Exception(f"Failed to check unified checkpoint, details: {e}.")
return is_safetensors