mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
222
fastdeploy/scheduler/local_scheduler.py
Normal file
222
fastdeploy/scheduler/local_scheduler.py
Normal file
@@ -0,0 +1,222 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
import threading
|
||||
import time
|
||||
|
||||
from fastdeploy.metrics.metrics import main_process_metrics
|
||||
from fastdeploy.utils import llm_logger
|
||||
from fastdeploy.engine.request import Request, RequestOutput
|
||||
from fastdeploy.scheduler.data import ScheduledRequest, ScheduledResponse
|
||||
|
||||
|
||||
class LocalScheduler(object):
|
||||
"""
|
||||
LocalScheduler Class
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
max_size: int,
|
||||
ttl: int,
|
||||
wait_response_timeout: float):
|
||||
self.max_size = max_size
|
||||
self.ttl = ttl
|
||||
self.mutex = threading.Lock()
|
||||
self.ids_read_cursor = 0
|
||||
self.ids: List[str] = list()
|
||||
|
||||
self.requests: Dict[str, ScheduledRequest] = dict()
|
||||
self.responses: Dict[str, List[ScheduledResponse]] = dict()
|
||||
|
||||
self.wait_request_timeout = 10
|
||||
self.wait_response_timeout = wait_response_timeout
|
||||
|
||||
self.requests_not_empty = threading.Condition(self.mutex)
|
||||
self.responses_not_empty = threading.Condition(self.mutex)
|
||||
|
||||
def _recycle(self, request_id: Optional[str] = None):
|
||||
"""
|
||||
recycle memory
|
||||
"""
|
||||
if request_id is not None:
|
||||
self.requests.pop(request_id, None)
|
||||
self.responses.pop(request_id, None)
|
||||
self.ids.pop(self.ids.index(request_id))
|
||||
self.ids_read_cursor -= 1
|
||||
return
|
||||
|
||||
if self.max_size <= 0:
|
||||
return
|
||||
|
||||
if len(self.requests) <= self.max_size:
|
||||
return
|
||||
|
||||
now = time.time()
|
||||
expired_ids = []
|
||||
for request_id in self.ids:
|
||||
request = self.requests[request_id]
|
||||
if (now - request.scheduled_time < self.ttl):
|
||||
break
|
||||
expired_ids.append(request.id)
|
||||
|
||||
for i, expired_id in enumerate(expired_ids):
|
||||
self.requests.pop(expired_id, None)
|
||||
self.responses.pop(expired_id, None)
|
||||
self.ids.pop(i)
|
||||
|
||||
if len(expired_ids) > 0:
|
||||
if len(expired_ids) - 1 >= self.ids_read_cursor:
|
||||
self.ids_read_cursor = 0
|
||||
else:
|
||||
self.ids_read_cursor -= len(expired_ids)
|
||||
|
||||
def put_requests(self, requests: List[Request]) -> List[Tuple[str, Optional[str]]]:
|
||||
""" submit requests to scheduler
|
||||
Args:
|
||||
requests: List[Request]
|
||||
"""
|
||||
with self.mutex:
|
||||
self._recycle()
|
||||
if self.max_size > 0 and len(self.requests) + len(requests) > self.max_size:
|
||||
msg = f"Exceeding the max length of the local scheduler (max_size={self.max_size})"
|
||||
return [(request.request_id, msg) for request in requests]
|
||||
|
||||
valid_ids = []
|
||||
duplicated_ids = []
|
||||
for request in requests:
|
||||
if request.request_id in self.requests:
|
||||
duplicated_ids.append(request.request_id)
|
||||
else:
|
||||
scheduled_request = ScheduledRequest(request)
|
||||
self.requests[scheduled_request.id] = scheduled_request
|
||||
valid_ids.append(scheduled_request.id)
|
||||
|
||||
self.ids += valid_ids
|
||||
self.requests_not_empty.notify_all()
|
||||
|
||||
llm_logger.info(
|
||||
f"Scheduler has put some requests: {valid_ids}")
|
||||
main_process_metrics.num_requests_waiting.inc(len(valid_ids))
|
||||
|
||||
if len(duplicated_ids) > 0:
|
||||
llm_logger.warning(
|
||||
f"Scheduler has received some duplicated requests: {duplicated_ids}")
|
||||
|
||||
results = [(request_id, None) for request_id in valid_ids]
|
||||
results += [(request_id, "duplicated request_id")
|
||||
for request_id in duplicated_ids]
|
||||
return results
|
||||
|
||||
def calc_required_blocks(self, token_num, block_size):
|
||||
"""calculate required blocks for given token number"""
|
||||
return (token_num + block_size - 1) // block_size
|
||||
|
||||
def get_requests(self, available_blocks, block_size,
|
||||
reserved_output_blocks, max_num_batched_tokens, batch=1) -> List[Request]:
|
||||
"""get requests from local cache
|
||||
Args:
|
||||
available_blocks: int
|
||||
block_size: int
|
||||
reserved_output_blocks: int
|
||||
max_num_batched_tokens: int
|
||||
batch: int
|
||||
"""
|
||||
if available_blocks <= reserved_output_blocks or batch < 1:
|
||||
llm_logger.debug(
|
||||
f"Scheduler's resource are insufficient: available_blocks={available_blocks} "
|
||||
f"reserved_output_blocks={reserved_output_blocks} batch={batch} "
|
||||
f"max_num_batched_tokens={max_num_batched_tokens}")
|
||||
return []
|
||||
|
||||
with self.requests_not_empty:
|
||||
batch_ids = self.requests_not_empty.wait_for(
|
||||
lambda: self.ids[self.ids_read_cursor:
|
||||
self.ids_read_cursor + batch], self.wait_request_timeout)
|
||||
|
||||
required_total_blocks = 0
|
||||
current_prefill_tokens = 0
|
||||
requests: List[Request] = []
|
||||
for request_id in batch_ids:
|
||||
request = self.requests[request_id]
|
||||
required_input_blocks = self.calc_required_blocks(
|
||||
request.size, block_size)
|
||||
current_prefill_tokens += request.size
|
||||
required_total_blocks += required_input_blocks + reserved_output_blocks
|
||||
if required_total_blocks > available_blocks or current_prefill_tokens > max_num_batched_tokens:
|
||||
break
|
||||
requests.append(request.raw)
|
||||
self.ids_read_cursor += len(requests)
|
||||
|
||||
if len(requests) > 0:
|
||||
llm_logger.info(
|
||||
f"Scheduler has pulled some request: {[request.request_id for request in requests]}")
|
||||
main_process_metrics.num_requests_waiting.dec(len(requests))
|
||||
main_process_metrics.num_requests_running.inc(len(requests))
|
||||
return requests
|
||||
|
||||
def put_results(self, results: List[RequestOutput]):
|
||||
"""put results into local cache"""
|
||||
responses: List[ScheduledResponse] = [
|
||||
ScheduledResponse(result) for result in results]
|
||||
|
||||
finished_responses = [
|
||||
response.id for response in responses if response.finished]
|
||||
if len(finished_responses) > 0:
|
||||
llm_logger.info(
|
||||
f"Scheduler has received a finished response: {finished_responses}")
|
||||
|
||||
with self.mutex:
|
||||
for response in responses:
|
||||
if response.id not in self.requests:
|
||||
llm_logger.warning(
|
||||
f"Scheduler has received a expired response: {[response.id]}")
|
||||
continue
|
||||
|
||||
if response.id not in self.responses:
|
||||
self.responses[response.id] = [response]
|
||||
continue
|
||||
self.responses[response.id].append(response)
|
||||
self.responses_not_empty.notify_all()
|
||||
|
||||
def get_results(self, request_ids: List[str]) -> Dict[str, List[RequestOutput]]:
|
||||
"""get results from local cache"""
|
||||
def _get_results():
|
||||
responses = dict()
|
||||
for request_id in request_ids:
|
||||
if request_id not in responses:
|
||||
responses[request_id] = []
|
||||
responses[request_id] += self.responses.pop(request_id, [])
|
||||
return responses
|
||||
|
||||
with self.responses_not_empty:
|
||||
responses = self.responses_not_empty.wait_for(
|
||||
_get_results, self.wait_response_timeout)
|
||||
|
||||
results = dict()
|
||||
for request_id, resps in responses.items():
|
||||
finished = False
|
||||
results[request_id] = []
|
||||
for resp in resps:
|
||||
results[request_id].append(resp.raw)
|
||||
finished |= resp.finished
|
||||
|
||||
if finished:
|
||||
self._recycle(request_id)
|
||||
llm_logger.info(
|
||||
f"Scheduler has pulled a finished response: {[request_id]}")
|
||||
return results
|
Reference in New Issue
Block a user