[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,187 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Dict, Optional
import paddle
from fastdeploy.model_executor.ops.gpu import (get_padding_offset, save_output,
save_output_dynamic,
set_stop_value_multi_ends,
set_stop_value_multi_seqs,
speculate_get_padding_offset,
step_paddle, update_inputs)
from fastdeploy.worker.output import ModelOutputData
def pre_process(max_len: int, input_ids: paddle.Tensor,
seq_lens_this_time: int, use_speculate_method: bool,
draft_tokens: Optional[paddle.Tensor],
seq_lens_encoder: Optional[paddle.Tensor]):
"""
Preprocessing before embedding.
Args:
max_len:
input_ids:
seq_lens_this_time:
use_speculate_method:
draft_tokens:
seq_lens_encoder:
Return:
ids_remove_padding:
cum_offsets:
padding_offset:
cu_seqlens_q:
cu_seqlens_k:
"""
# Remove padding
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
token_num = paddle.sum(seq_lens_this_time)
if use_speculate_method:
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
) = speculate_get_padding_offset(
input_ids,
draft_tokens,
cum_offsets_now,
token_num,
seq_lens_this_time,
seq_lens_encoder,
)
else:
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
) = get_padding_offset(input_ids, cum_offsets_now, token_num,
seq_lens_this_time)
return (
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
)
def post_process(tokens: paddle.Tensor, model_output: ModelOutputData) -> None:
""" Post-processing steps after completing a single token generation. """
# 1. Set stop value
paddle.assign(
paddle.where(
model_output.stop_flags,
model_output.step_idx,
model_output.step_idx + 1,
),
model_output.step_idx,
)
length_cond = paddle.greater_equal(model_output.step_idx,
model_output.max_dec_len)
paddle.assign(
paddle.logical_or(model_output.stop_flags, length_cond),
model_output.stop_flags,
)
if model_output.use_stop_seqs:
set_stop_value_multi_seqs(
tokens,
model_output.pre_ids,
model_output.step_idx,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.stop_seqs,
model_output.stop_seqs_len,
model_output.eos_token_id,
)
else:
set_stop_value_multi_ends(
tokens,
model_output.stop_flags,
model_output.seq_lens_this_time,
model_output.eos_token_id,
model_output.next_tokens,
False,
) # multi ends
# 2. Update the input buffer of the model
with paddle.framework._no_check_dy2st_diff():
update_inputs(
model_output.stop_flags,
model_output.not_need_stop,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.input_ids,
model_output.stop_nums,
tokens,
model_output.is_block_step,
)
# 3. Transmit the model's output and stop generation signal via message queue.
# In the future, we will abandon this approach.
if model_output.output_via_mq:
if model_output.msg_queue_id is None:
save_output(
tokens,
model_output.not_need_stop,
model_output.mp_rank,
model_output.use_ep,
)
else:
save_output_dynamic(
tokens,
model_output.not_need_stop,
model_output.mp_rank,
model_output.msg_queue_id,
model_output.gpt.use_ep,
)
def step_cuda(share_inputs: Dict[str, paddle.Tensor], block_size: int,
enc_dec_block_num: int) -> None:
"""
TODO(gongshaotian): normalization name
"""
step_paddle(
share_inputs["stop_flags"],
share_inputs["seq_lens_this_time"],
share_inputs["step_seq_lens_encoder"],
share_inputs["seq_lens_encoder"],
share_inputs["seq_lens_decoder"],
share_inputs["block_tables"],
share_inputs["encoder_block_lens"],
share_inputs["is_block_step"],
share_inputs["step_block_list"],
share_inputs["step_lens"],
share_inputs["recover_block_list"],
share_inputs["recover_lens"],
share_inputs["need_block_list"],
share_inputs["need_block_len"],
share_inputs["used_list_len"],
share_inputs["free_list"],
share_inputs["free_list_len"],
share_inputs["input_ids"],
share_inputs["pre_ids"],
share_inputs["step_idx"],
share_inputs["next_tokens"],
share_inputs["first_token_ids"],
block_size,
enc_dec_block_num,
)