mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
98
fastdeploy/model_executor/models/model_base.py
Normal file
98
fastdeploy/model_executor/models/model_base.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""
|
||||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Union
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
|
||||
class ModelRegistry:
|
||||
"""
|
||||
Used to register and retrieve model classes.
|
||||
"""
|
||||
_registry = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, model_class):
|
||||
if issubclass(
|
||||
model_class,
|
||||
ModelForCasualLM) and model_class is not ModelForCasualLM:
|
||||
cls._registry[model_class.name()] = model_class
|
||||
return model_class
|
||||
|
||||
@classmethod
|
||||
def get_class(cls, name):
|
||||
if name not in cls._registry:
|
||||
raise ValueError(f"Model '{name}' is not registered!")
|
||||
return cls._registry[name]
|
||||
|
||||
|
||||
class ModelForCasualLM(nn.Layer, ABC):
|
||||
"""
|
||||
Base class for LM
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
"""
|
||||
Args:
|
||||
configs (dict): Configurations including parameters such as max_dec_len, min_dec_len, decode_strategy,
|
||||
ori_vocab_size, use_topp_sampling, etc.
|
||||
"""
|
||||
super(ModelForCasualLM, self).__init__()
|
||||
|
||||
@abstractmethod
|
||||
def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray,
|
||||
paddle.Tensor]]):
|
||||
"""
|
||||
Load model parameters from a given state dictionary.
|
||||
|
||||
Args:
|
||||
state_dict (dict[str, np.ndarray | paddle.Tensor]):
|
||||
A dictionary containing model parameters, where keys are parameter names
|
||||
and values are NumPy arrays or PaddlePaddle tensors.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
pos_emb=None,
|
||||
**model_kwargs,
|
||||
):
|
||||
"""
|
||||
Defines the forward pass of the model for generating text.
|
||||
|
||||
Args:
|
||||
input_ids (Tensor, optional): The input token ids to the model.
|
||||
pos_emb (Tensor, optional): position Embeddings for model.
|
||||
**model_kwargs: Additional keyword arguments for the model.
|
||||
|
||||
Returns:
|
||||
Tensor or list of Tensors: Generated tokens or decoded outputs.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def compute_logits(self, hidden_state, **logits_prosessor_kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def name(self):
|
||||
raise NotImplementedError
|
Reference in New Issue
Block a user