[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,72 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from fastdeploy.distributed.parallel_state import \
get_tensor_model_parallel_world_size
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.ops import \
apply_penalty_multi_scores
from fastdeploy.platforms import current_platform
class Sampler(nn.Layer):
"""
"""
def __init__(self):
"""
"""
super().__init__()
if current_platform.is_cuda():
self.nranks = get_tensor_model_parallel_world_size()
self.forward = self.forward_cuda
else:
raise NotImplementedError()
def forward_cuda(
self,
logits: paddle.Tensor,
sampling_metadata: SamplingMetadata,
) -> paddle.Tensor:
"""
"""
logits = apply_penalty_multi_scores(
sampling_metadata.prompt_token_ids,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
)
probs = F.softmax(logits)
_, next_tokens = paddle.tensor.top_p_sampling(probs,
sampling_metadata.top_p)
if self.nranks > 1:
paddle.distributed.broadcast(next_tokens, 0)
return next_tokens