mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-01 14:52:33 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
72
fastdeploy/model_executor/layers/sample/sampler.py
Normal file
72
fastdeploy/model_executor/layers/sample/sampler.py
Normal file
@@ -0,0 +1,72 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
from fastdeploy.distributed.parallel_state import \
|
||||
get_tensor_model_parallel_world_size
|
||||
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
||||
from fastdeploy.model_executor.layers.sample.ops import \
|
||||
apply_penalty_multi_scores
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
|
||||
class Sampler(nn.Layer):
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
super().__init__()
|
||||
if current_platform.is_cuda():
|
||||
self.nranks = get_tensor_model_parallel_world_size()
|
||||
self.forward = self.forward_cuda
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def forward_cuda(
|
||||
self,
|
||||
logits: paddle.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
"""
|
||||
|
||||
logits = apply_penalty_multi_scores(
|
||||
sampling_metadata.prompt_token_ids,
|
||||
logits,
|
||||
sampling_metadata.repetition_penalties,
|
||||
sampling_metadata.frequency_penalties,
|
||||
sampling_metadata.presence_penalties,
|
||||
sampling_metadata.temperature,
|
||||
sampling_metadata.bad_words_token_ids,
|
||||
sampling_metadata.step_idx,
|
||||
sampling_metadata.min_dec_lens,
|
||||
sampling_metadata.eos_token_ids,
|
||||
)
|
||||
|
||||
probs = F.softmax(logits)
|
||||
|
||||
_, next_tokens = paddle.tensor.top_p_sampling(probs,
|
||||
sampling_metadata.top_p)
|
||||
|
||||
if self.nranks > 1:
|
||||
paddle.distributed.broadcast(next_tokens, 0)
|
||||
|
||||
return next_tokens
|
Reference in New Issue
Block a user