mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
116
fastdeploy/model_executor/layers/quantization/wfp8afp8.py
Normal file
116
fastdeploy/model_executor/layers/quantization/wfp8afp8.py
Normal file
@@ -0,0 +1,116 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
|
||||
import fastdeploy
|
||||
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
|
||||
|
||||
from .quant_base import QuantConfigBase, QuantMethodBase
|
||||
|
||||
|
||||
class WFP8AFP8Config(QuantConfigBase):
|
||||
"""
|
||||
Quantization config for weight and activation with FP8.
|
||||
"""
|
||||
|
||||
def __init__(self, weight_scale_dict, act_scale_dict) -> None:
|
||||
super().__init__()
|
||||
self.weight_scale_dict = weight_scale_dict
|
||||
self.act_scale_dict = act_scale_dict
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "wfp8afp8"
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: dict) -> "WFP8AFP8Config":
|
||||
weight_scale_dict = config["weight_scale_dict"]
|
||||
act_scale_dict = config["act_scale_dict"]
|
||||
return cls(weight_scale_dict, act_scale_dict)
|
||||
|
||||
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
||||
return WFP8AFP8LinearMethod(self)
|
||||
|
||||
|
||||
class WFP8AFP8LinearMethod(QuantMethodBase):
|
||||
"""
|
||||
Weight and activation quantization method for linear layer with FP8
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
quant_config: WFP8AFP8Config,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.quant_config = quant_config
|
||||
|
||||
def create_weights(self, layer):
|
||||
# TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
|
||||
weight_scale = self.quant_config.weight_scale_dict.get(
|
||||
layer.prefix + ".weight_quanter")
|
||||
in_scale = self.quant_config.act_scale_dict.get(layer.prefix +
|
||||
".activation_quanter")
|
||||
self.skip_quant = False
|
||||
# we will skip quant if weight_scale is not found or in_scale is not found
|
||||
if weight_scale is None or in_scale is None:
|
||||
self.skip_quant = True
|
||||
else:
|
||||
max_range = 448.0
|
||||
layer.scalar_scale_name = layer.prefix + ".scalar_weight_quanter"
|
||||
layer.scalar_scale = layer.create_parameter(
|
||||
shape=([1]),
|
||||
dtype="float32",
|
||||
)
|
||||
layer.scalar_scale.set_value(
|
||||
paddle.to_tensor([1.0 / (max_range * in_scale)],
|
||||
dtype="float32"))
|
||||
linear_out_scale = paddle.to_tensor(weight_scale /
|
||||
max_range).astype("float32")
|
||||
layer.linear_out_scale = layer.create_parameter(
|
||||
shape=[layer.embed_dim],
|
||||
dtype="float32",
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
layer.linear_out_scale.set_value(
|
||||
convert_to_npu_dequant_scale(linear_out_scale))
|
||||
|
||||
def process_loaded_weights(self, layer, weights) -> None:
|
||||
# TODO(YuanRisheng): We should abstract the skip_quant logic to adapt to more quant methods
|
||||
if self.skip_quant:
|
||||
weight_tensor = weights.cast(layer._dtype)
|
||||
layer.linear_weight.set_value(weight_tensor)
|
||||
return
|
||||
weight_tensor = weights.transpose([1, 0])
|
||||
weight_tensor = paddle.cast(weight_tensor, self.weight_dtype)
|
||||
self.linear_weight.copy_(weight_tensor, False)
|
||||
|
||||
def apply(self, layer, x):
|
||||
if self.skip_quant:
|
||||
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
|
||||
return linear_out
|
||||
linear_out = fastdeploy.model_executor.ops.gpu.per_channel_fp8_fp8_half_gemm_fused(
|
||||
x,
|
||||
layer.linear_weight,
|
||||
bias=layer.linear_bias if layer.add_bias else None,
|
||||
scalar_scale=layer.scalar_scale,
|
||||
channel_scale=layer.linear_out_scale,
|
||||
transpose_x=False,
|
||||
transpose_y=True,
|
||||
output_dtype=layer._dtype,
|
||||
)
|
||||
return linear_out
|
Reference in New Issue
Block a user