mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
125
fastdeploy/model_executor/layers/quantization/weight_only.py
Normal file
125
fastdeploy/model_executor/layers/quantization/weight_only.py
Normal file
@@ -0,0 +1,125 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
from abc import abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
import paddle
|
||||
from paddle.nn.quant import weight_only_linear, weight_quantize
|
||||
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
from .quant_base import QuantConfigBase, QuantMethodBase
|
||||
|
||||
|
||||
class WeightOnlyConfig(QuantConfigBase):
|
||||
"""
|
||||
Quantization config for weight only
|
||||
Args:
|
||||
weight_only_linear_arch: The architecture of weight only linear layer
|
||||
algo: The quant algorithm("weight_only_int8" or "weight_only_int4") used for weight only linear layer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
weight_only_linear_arch: int,
|
||||
algo: str,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.weight_only_linear_arch = weight_only_linear_arch
|
||||
self.algo = algo
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "weight_only"
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: dict) -> "WeightOnlyConfig":
|
||||
weight_only_linear_arch = config["weight_only_linear_arch"]
|
||||
algo = config["algo"]
|
||||
return cls(weight_only_linear_arch, algo)
|
||||
|
||||
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
|
||||
if current_platform.is_xpu():
|
||||
from fastdeploy.model_executor.layers.backends import XPUWeightOnlyLinearMethod
|
||||
return XPUWeightOnlyLinearMethod(self)
|
||||
else:
|
||||
return GPUWeightOnlyLinearMethod(self)
|
||||
|
||||
|
||||
class WeightOnlyLinearMethod(QuantMethodBase):
|
||||
"""
|
||||
Weight only quantization method for linear layer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
quant_config: WeightOnlyConfig,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.quant_config = quant_config
|
||||
|
||||
def create_weights(self, layer):
|
||||
weight_only_scale_name = layer.prefix + ".weight_only_scale"
|
||||
linear_weight_scale_shape = [layer.embed_dim]
|
||||
if hasattr(layer, "linear_weight_shape"):
|
||||
if isinstance(layer.linear_weight_shape, list):
|
||||
layer_weight_shape = layer.linear_weight_shape
|
||||
linear_weight_scale_shape = layer_weight_shape[:1]
|
||||
|
||||
layer.linear_weight_scale = layer.create_parameter(
|
||||
shape=linear_weight_scale_shape,
|
||||
dtype=layer._dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def process_loaded_weights(self, layer, weights) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def apply(self, layer, x):
|
||||
linear_out = weight_only_linear(
|
||||
x,
|
||||
weight=layer.linear_weight,
|
||||
bias=layer.linear_bias if layer.add_bias else None,
|
||||
weight_scale=layer.linear_weight_scale,
|
||||
weight_dtype=layer.weight_dtype,
|
||||
arch=self.quant_config.weight_only_linear_arch,
|
||||
)
|
||||
return linear_out
|
||||
|
||||
|
||||
class GPUWeightOnlyLinearMethod(WeightOnlyLinearMethod):
|
||||
"""
|
||||
Weight only quantization method for linear layer on GPU
|
||||
The weights are loaded in the BF16 numerical format. After loading, the quantization coefficients will be computed,
|
||||
and the weights will be quantized to int8 or int4.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
quant_config: WeightOnlyConfig,
|
||||
) -> None:
|
||||
super().__init__(quant_config)
|
||||
|
||||
def process_loaded_weights(self, layer, weight) -> None:
|
||||
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
|
||||
weight,
|
||||
algo=self.quant_config.algo,
|
||||
arch=self.quant_config.weight_only_linear_arch,
|
||||
)
|
||||
|
||||
layer.linear_weight.set_value(quanted_weight_tensor)
|
||||
layer.linear_weight_scale.set_value(
|
||||
weight_scale_tensor.astype(paddle.get_default_dtype()))
|
Reference in New Issue
Block a user