mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
85
fastdeploy/model_executor/layers/quantization/quant_base.py
Normal file
85
fastdeploy/model_executor/layers/quantization/quant_base.py
Normal file
@@ -0,0 +1,85 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Optional
|
||||
|
||||
|
||||
class QuantMethodBase(ABC):
|
||||
"""Base class for different quantized methods."""
|
||||
|
||||
@abstractmethod
|
||||
def create_weights(self, layer, *weight_args, **extra_weight_attrs):
|
||||
"""Create weights for a layer.
|
||||
|
||||
The weights will be set as attributes of the layer."""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def apply(self, layer, *args, **kwargs):
|
||||
"""Apply the weights in layer to the input tensor.
|
||||
|
||||
Expects create_weights to have been called before on the layer."""
|
||||
raise NotImplementedError
|
||||
|
||||
def process_loaded_weights(self, layer, weights):
|
||||
"""Process the weight after loading.
|
||||
|
||||
This can be used for example, to transpose weights for computation.
|
||||
"""
|
||||
return
|
||||
|
||||
|
||||
class QuantConfigBase(ABC):
|
||||
"""Base class for quantization configs."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.quant_round_type = None
|
||||
self.quant_max_bound = None
|
||||
self.quant_min_bound = None
|
||||
|
||||
@abstractmethod
|
||||
def get_name(self) -> str:
|
||||
"""Name of the quantization method."""
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def from_config(cls, config: dict) -> "QuantConfigBase":
|
||||
"""Create a config class from the model's quantization config."""
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def get_from_keys(config: dict[str, Any], keys: list[str]) -> Any:
|
||||
"""Get a value from the model's quantization config."""
|
||||
for key in keys:
|
||||
if key in config:
|
||||
return config[key]
|
||||
raise ValueError(f"Cannot find any of {keys} in the model's "
|
||||
"quantization config.")
|
||||
|
||||
@abstractmethod
|
||||
def get_quant_method(self, layer, prefix) -> Optional[QuantMethodBase]:
|
||||
"""Get the quantize method to use for the quantized layer.
|
||||
|
||||
Args:
|
||||
layer: The layer for the quant method.
|
||||
prefix: The full name of the layer in the state dict
|
||||
Returns:
|
||||
The quantize method. None if the given layer doesn't support quant
|
||||
method.
|
||||
"""
|
||||
raise NotImplementedError
|
Reference in New Issue
Block a user