[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,85 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from abc import ABC, abstractmethod
from typing import Any, Optional
class QuantMethodBase(ABC):
"""Base class for different quantized methods."""
@abstractmethod
def create_weights(self, layer, *weight_args, **extra_weight_attrs):
"""Create weights for a layer.
The weights will be set as attributes of the layer."""
raise NotImplementedError
@abstractmethod
def apply(self, layer, *args, **kwargs):
"""Apply the weights in layer to the input tensor.
Expects create_weights to have been called before on the layer."""
raise NotImplementedError
def process_loaded_weights(self, layer, weights):
"""Process the weight after loading.
This can be used for example, to transpose weights for computation.
"""
return
class QuantConfigBase(ABC):
"""Base class for quantization configs."""
def __init__(self):
super().__init__()
self.quant_round_type = None
self.quant_max_bound = None
self.quant_min_bound = None
@abstractmethod
def get_name(self) -> str:
"""Name of the quantization method."""
raise NotImplementedError
@classmethod
@abstractmethod
def from_config(cls, config: dict) -> "QuantConfigBase":
"""Create a config class from the model's quantization config."""
raise NotImplementedError
@staticmethod
def get_from_keys(config: dict[str, Any], keys: list[str]) -> Any:
"""Get a value from the model's quantization config."""
for key in keys:
if key in config:
return config[key]
raise ValueError(f"Cannot find any of {keys} in the model's "
"quantization config.")
@abstractmethod
def get_quant_method(self, layer, prefix) -> Optional[QuantMethodBase]:
"""Get the quantize method to use for the quantized layer.
Args:
layer: The layer for the quant method.
prefix: The full name of the layer in the state dict
Returns:
The quantize method. None if the given layer doesn't support quant
method.
"""
raise NotImplementedError