mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
126
fastdeploy/model_executor/layers/moe/tp.py
Normal file
126
fastdeploy/model_executor/layers/moe/tp.py
Normal file
@@ -0,0 +1,126 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import os
|
||||
import paddle
|
||||
import fastdeploy
|
||||
import fastdeploy.model_executor.ops.gpu.deep_gemm as deep_gemm
|
||||
from fastdeploy.model_executor.layers.moe.moe import MoELayer
|
||||
|
||||
|
||||
class MoeTPDecoerDeepDeepGEMMLayer(MoELayer):
|
||||
"""
|
||||
MoeTPDecoerDeepDeepGEMMLayer
|
||||
"""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
"""
|
||||
forward
|
||||
"""
|
||||
gate_out = paddle.matmul(x.cast("float32"), self.gate_weight)
|
||||
if os.getenv("EP_DECODER_PERF_TEST", "False") == "True":
|
||||
gate_out = paddle.rand(shape=gate_out.shape, dtype=gate_out.dtype)
|
||||
ffn1_out = paddle.empty(
|
||||
[
|
||||
self.num_local_experts,
|
||||
self.max_batch_size,
|
||||
self.moe_intermediate_size * 2,
|
||||
],
|
||||
dtype=self._dtype,
|
||||
)
|
||||
|
||||
ffn_out = paddle.empty(
|
||||
[
|
||||
self.num_local_experts,
|
||||
self.max_batch_size,
|
||||
self.embed_dim,
|
||||
],
|
||||
dtype=self._dtype,
|
||||
)
|
||||
|
||||
topk_idx, topk_weights = fastdeploy.model_executor.ops.gpu.moe_topk_select(
|
||||
gate_out,
|
||||
(
|
||||
self.gate_correction_bias
|
||||
if self.moe_config.moe_use_gate_correction_bias
|
||||
else None
|
||||
),
|
||||
self.top_k,
|
||||
True, # apply_norm_weight
|
||||
False,
|
||||
)
|
||||
permute_input, token_nums_per_expert, permute_indices_per_token = (
|
||||
fastdeploy.model_executor.ops.gpu.moe_deepgemm_permute(
|
||||
x, topk_idx, self.num_local_experts, self.max_batch_size
|
||||
)
|
||||
)
|
||||
|
||||
expected_m = 128
|
||||
|
||||
permute_input_fp8, scale = fastdeploy.model_executor.ops.gpu.masked_per_token_quant(
|
||||
permute_input, token_nums_per_expert, 128
|
||||
)
|
||||
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(
|
||||
(permute_input_fp8, scale),
|
||||
(
|
||||
self.moe_ffn1_weight,
|
||||
self.moe_ffn1_weight_scale,
|
||||
),
|
||||
ffn1_out,
|
||||
token_nums_per_expert,
|
||||
expected_m,
|
||||
)
|
||||
|
||||
act_out = fastdeploy.model_executor.ops.gpu.group_swiglu_with_masked(
|
||||
ffn1_out, token_nums_per_expert
|
||||
)
|
||||
|
||||
act_out_fp8, scale = fastdeploy.model_executor.ops.gpu.masked_per_token_quant(
|
||||
act_out, token_nums_per_expert, 128
|
||||
)
|
||||
|
||||
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(
|
||||
(act_out_fp8, scale),
|
||||
(
|
||||
self.moe_ffn2_weight,
|
||||
self.moe_ffn2_weight_scale,
|
||||
),
|
||||
ffn_out,
|
||||
token_nums_per_expert,
|
||||
expected_m,
|
||||
)
|
||||
|
||||
fused_moe_out = fastdeploy.model_executor.ops.gpu.moe_deepgemm_depermute(
|
||||
ffn_out, permute_indices_per_token, topk_idx, topk_weights
|
||||
)[0]
|
||||
|
||||
return fused_moe_out
|
||||
|
||||
|
||||
class MoeTPPrefillDeepDeepGEMMLayer(MoELayer):
|
||||
"""
|
||||
MoeTPPrefillDeepDeepGEMMLayer
|
||||
"""
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
"""
|
||||
forward
|
||||
"""
|
||||
raise NotImplementedError("Prefill is comming soon...")
|
Reference in New Issue
Block a user