[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,190 @@
"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from paddle import nn
from paddle.distributed import fleet
from .utils import get_tensor
def parallel_matmul(lm_output, logit_weights, parallel_output):
"""
Performs parallel matrix multiplication for large-scale language models.
Args:
lm_output (Tensor): The output tensor from the language model layers,
which will be multiplied with the logit weights.
logit_weights (Tensor): The weights used in the matrix multiplication,
typically the weights of the output layer.
parallel_output (bool): A flag indicating whether to return the parallel
outputs or concatenate them. If True, returns the outputs from the
parallel computation directly. If False, concatenates the outputs
across the model parallel group before returning.
Returns:
Tensor: The result of the matrix multiplication. If `parallel_output` is True,
returns the parallel outputs. If `parallel_output` is False and
model parallel world size is greater than 1, returns the concatenated
outputs across the model parallel group. Otherwise, returns the direct
matrix multiplication result.
"""
hcg = fleet.get_hybrid_communicate_group()
model_parallel_group = hcg.get_model_parallel_group()
world_size = hcg.get_model_parallel_world_size()
# rank = hcg.get_model_parallel_rank()
if world_size > 1:
input_parallel = paddle.distributed.collective._c_identity(
lm_output, group=model_parallel_group)
logits = paddle.matmul(input_parallel, logit_weights, transpose_y=True)
if parallel_output:
return logits
return paddle.distributed.collective._c_concat(
logits, group=model_parallel_group)
else:
logits = paddle.matmul(lm_output, logit_weights, transpose_y=True)
return logits
class ParallelLMHead(nn.Layer):
"""
"Parallelized LM head.
"""
def __init__(
self,
llm_config,
num_embeddings,
embedding_dim,
prefix="",
with_bias=False,
tie_word_embeddings=None,
):
"""
Parallelized LMhead.
Args:
llm_config (LLMConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
num_embeddings (int): vocabulary size.
embedding_dim (int): size of hidden state.
tie_embeddings_weight (bool, optional): Whether to share weights across model parallel ranks,
defaults to None.
prefix (str): full name of the layer in the state dict
"""
super(ParallelLMHead, self).__init__()
self.use_moe = llm_config.model_config.use_moe
self.linear_weight_key = prefix + ".weight"
if with_bias:
self.linear_bias_key = prefix + ".bias"
else:
self.linear_bias_key = None
self.use_ep = llm_config.parallel_config.use_ep
self.column_cut = True
self.fused_linear = True
hcg = fleet.get_hybrid_communicate_group()
mp_rank = hcg.get_model_parallel_rank()
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
self.tie_word_embeddings = tie_word_embeddings
if self.tie_word_embeddings is None:
if self.use_ep:
self.weight = self.create_parameter(
shape=[embedding_dim, num_embeddings],
dtype=paddle.get_default_dtype(),
is_bias=False,
)
else:
if self.column_cut:
need_gather = True
self.out_linear = ColumnParallelLinear(
embedding_dim,
num_embeddings,
mp_group=fleet.get_hybrid_communicate_group().
get_model_parallel_group(),
weight_attr=None,
has_bias=True,
gather_output=need_gather,
fuse_matmul_bias=self.fused_linear, # False diff更小
)
else:
self.out_linear = RowParallelLinear(
embedding_dim,
num_embeddings,
mp_group=fleet.get_hybrid_communicate_group().
get_model_parallel_group(),
weight_attr=None,
has_bias=True,
input_is_parallel=False,
fuse_matmul_bias=self.fused_linear, # False diff更小
)
def load_state_dict(self, state_dict):
"""
Load the checkpoint state dictionary into the layer.
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
if self.tie_word_embeddings is None:
if self.use_ep:
self.weight.set_value(
get_tensor(state_dict.pop(self.linear_weight_key)).astype(
paddle.get_default_dtype()))
else:
self.out_linear.weight.set_value(
get_tensor(state_dict.pop(self.linear_weight_key)).astype(
paddle.get_default_dtype()))
bias = (
get_tensor(state_dict.pop(self.linear_bias_key)).astype(
paddle.get_default_dtype()
)
if self.linear_bias_key is not None
else paddle.zeros(
self.out_linear.bias.shape, dtype=paddle.get_default_dtype()
)
)
self.out_linear.bias.set_value(bias)
def forward(self, input):
"""
Defines the forward computation of the layer.
Args:
input (Tensor): The input tensor to the layer.
Returns:
Tensor: The output tensor after processing through the layer.
"""
logits = input
if self.tie_word_embeddings is not None:
logits = parallel_matmul(logits, self.tie_word_embeddings, False)
else:
if self.use_ep:
logits = paddle.matmul(logits, self.weight)
else:
logits = self.out_linear(logits)
return logits