mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
220
fastdeploy/model_executor/layers/hydra_head.py
Normal file
220
fastdeploy/model_executor/layers/hydra_head.py
Normal file
@@ -0,0 +1,220 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from paddlenlp.utils.log import logger
|
||||
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from paddle import nn
|
||||
from paddle.distributed import fleet
|
||||
from paddle.distributed.fleet.meta_parallel import (
|
||||
ColumnParallelLinear,
|
||||
VocabParallelEmbedding,
|
||||
)
|
||||
|
||||
from .utils import get_tensor
|
||||
|
||||
|
||||
class ResBlock(nn.Layer):
|
||||
"""
|
||||
A Residual Block module.
|
||||
|
||||
This module performs a linear transformation followed by a SiLU activation,
|
||||
and then adds the result to the original input, creating a residual connection.
|
||||
|
||||
Args:
|
||||
hidden_size (int): The size of the hidden layers in the block.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, num_condition=0):
|
||||
super().__init__()
|
||||
self.linear = nn.Linear(hidden_size * (num_condition + 1), hidden_size)
|
||||
if num_condition > 0:
|
||||
self.res_connection = nn.Linear(
|
||||
hidden_size * (num_condition + 1), hidden_size
|
||||
)
|
||||
else:
|
||||
self.res_connection = nn.Identity()
|
||||
# Initialize as an identity mapping
|
||||
# _no_grad_fill_(self.linear.weight, 0)
|
||||
# Use SiLU activation to keep consistent with the Llama model
|
||||
self.act = nn.Silu()
|
||||
|
||||
@paddle.no_grad()
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the ResBlock.
|
||||
|
||||
Args:
|
||||
x (paddle.Tensor): Input tensor.
|
||||
|
||||
Returns:
|
||||
paddle.Tensor: Output after the residual connection and activation.
|
||||
"""
|
||||
return self.res_connection(x) + self.act(self.linear(x))
|
||||
|
||||
|
||||
class HydraHead(nn.Layer):
|
||||
"""
|
||||
A Hydra Head module.
|
||||
|
||||
This module performs multi hydra head layers,
|
||||
each of which is a hydra_lm_head followed by a head
|
||||
|
||||
Args:
|
||||
hydra_num_heads (int): The number of hyhra heads.
|
||||
hydra_num_layers (int): The number of layers.
|
||||
hidden_size (int): The size of the hidden layers in the block.
|
||||
tensor_parallel_degree(int): TP degree.
|
||||
vocab_size (int): The size of vocabulary.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hydra_num_heads,
|
||||
hydra_num_layers,
|
||||
hidden_size,
|
||||
tensor_parallel_degree,
|
||||
vocab_size,
|
||||
):
|
||||
super().__init__()
|
||||
self.hydra_num_heads = hydra_num_heads
|
||||
self.hydra_num_layers = hydra_num_layers
|
||||
self.hidden_size = hidden_size
|
||||
self.tensor_parallel_degree = tensor_parallel_degree
|
||||
self.vocab_size = vocab_size
|
||||
|
||||
self.hydra_mlp = nn.LayerList(
|
||||
[
|
||||
nn.Sequential(
|
||||
ResBlock(self.hidden_size, hydra_head_idx + 1),
|
||||
*([ResBlock(self.hidden_size)] * (self.hydra_num_layers - 1)),
|
||||
)
|
||||
for hydra_head_idx in range(self.hydra_num_heads)
|
||||
]
|
||||
)
|
||||
|
||||
if self.tensor_parallel_degree > 1:
|
||||
self.hydra_lm_head = nn.LayerList(
|
||||
[
|
||||
ColumnParallelLinear(
|
||||
self.hidden_size,
|
||||
self.vocab_size,
|
||||
weight_attr=paddle.ParamAttr(
|
||||
initializer=nn.initializer.Normal(mean=0.0, std=0.0)
|
||||
),
|
||||
gather_output=True,
|
||||
has_bias=False,
|
||||
)
|
||||
for _ in range(self.hydra_num_heads)
|
||||
]
|
||||
)
|
||||
else:
|
||||
self.hydra_lm_head = nn.LayerList(
|
||||
[
|
||||
nn.Linear(self.hidden_size, self.vocab_size, bias_attr=False)
|
||||
for _ in range(self.hydra_num_heads)
|
||||
]
|
||||
)
|
||||
|
||||
self.word_embeddings = VocabParallelEmbedding(
|
||||
vocab_size,
|
||||
hidden_size,
|
||||
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
|
||||
weight_attr=paddle.ParamAttr(initializer=nn.initializer.Normal(mean=0.0)),
|
||||
)
|
||||
|
||||
def custom_set_state_dict(self, state_dict):
|
||||
"""
|
||||
Load Parameter of Hydra Head from state_dict with custom names.
|
||||
|
||||
Args:
|
||||
state_dict (dict): KV pair of name and parameters.
|
||||
"""
|
||||
for hydra_head_idx in range(self.hydra_num_heads):
|
||||
self.hydra_mlp[hydra_head_idx][0].res_connection.weight.set_value(
|
||||
get_tensor(
|
||||
state_dict.pop(f"0.{hydra_head_idx}.0.res_connection.weight")
|
||||
)
|
||||
)
|
||||
self.hydra_mlp[hydra_head_idx][0].res_connection.bias.set_value(
|
||||
get_tensor(state_dict.pop(f"0.{hydra_head_idx}.0.res_connection.bias"))
|
||||
)
|
||||
|
||||
for layer_idx in range(self.hydra_num_layers):
|
||||
self.hydra_mlp[hydra_head_idx][layer_idx].linear.weight.set_value(
|
||||
get_tensor(
|
||||
state_dict.pop(f"0.{hydra_head_idx}.{layer_idx}.linear.weight")
|
||||
)
|
||||
)
|
||||
self.hydra_mlp[hydra_head_idx][layer_idx].linear.bias.set_value(
|
||||
get_tensor(
|
||||
state_dict.pop(f"0.{hydra_head_idx}.{layer_idx}.linear.bias")
|
||||
)
|
||||
)
|
||||
|
||||
self.hydra_lm_head[hydra_head_idx].weight.set_value(
|
||||
get_tensor(state_dict.pop(f"1.{hydra_head_idx}.weight"))
|
||||
)
|
||||
|
||||
self.word_embeddings.weight.set_value(
|
||||
get_tensor(state_dict.pop("word_embeddings.weight"))
|
||||
)
|
||||
|
||||
def set_state_dict(self, state_dict):
|
||||
"""
|
||||
Load Parameter of Hydra Head from state_dict.
|
||||
|
||||
Args:
|
||||
state_dict (dict): KV pair of name and parameters.
|
||||
"""
|
||||
is_custom = True
|
||||
for key in state_dict.keys():
|
||||
if key != "word_embeddings.weight" and (
|
||||
"hydra_mlp" in key or "hydra_head" in key
|
||||
):
|
||||
is_custom = False
|
||||
break
|
||||
|
||||
if is_custom:
|
||||
logger.info("Hydra use custom set_state_dict")
|
||||
self.custom_set_state_dict(state_dict)
|
||||
else:
|
||||
logger.info("Hydra use default set_state_dict")
|
||||
super().set_state_dict(state_dict)
|
||||
|
||||
@paddle.no_grad()
|
||||
def forward(self, input_ids, hidden_states, next_tokens):
|
||||
"""
|
||||
Forward pass of Hydra Head
|
||||
|
||||
Args:
|
||||
input_ids: [batch_size, 1] The tokens sampled by the previous head go through the embedding,
|
||||
starting with the last accept token
|
||||
hidden_states: [batch_size, hidden_size] The hidden_states of the last accept_tokens
|
||||
"""
|
||||
hydra_inputs = [hidden_states]
|
||||
input_embeds = self.word_embeddings(input_ids)
|
||||
for hydra_head_idx in range(self.hydra_num_heads):
|
||||
hydra_inputs.append(input_embeds)
|
||||
head_input = paddle.concat(hydra_inputs, axis=-1)
|
||||
hidden_states = self.hydra_mlp[hydra_head_idx](head_input)
|
||||
logits = self.hydra_lm_head[hydra_head_idx](hidden_states)
|
||||
probs = F.softmax(logits)
|
||||
_, topk_tokens = paddle.topk(probs, k=1, axis=-1)
|
||||
next_tokens[:, 1 + hydra_head_idx : 2 + hydra_head_idx] = topk_tokens[:]
|
||||
|
||||
input_embeds = self.word_embeddings(next_tokens[:, 1 + hydra_head_idx])
|
Reference in New Issue
Block a user