mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
87
fastdeploy/model_executor/layers/backends/xpu/utils.py
Normal file
87
fastdeploy/model_executor/layers/backends/xpu/utils.py
Normal file
@@ -0,0 +1,87 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
!! This file will be deleted after the platform is fully functional
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
|
||||
def xpu_clip_and_round(x):
|
||||
"""
|
||||
Clip and round the input array to the range [-127, 127] and convert to int8.
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): The input array to be clipped and rounded.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: The clipped and rounded array with dtype int8.
|
||||
"""
|
||||
return np.clip(np.around(x), -127, 127).astype("int8")
|
||||
|
||||
|
||||
def xpu_quant_qkv_weight(weight_np):
|
||||
"""
|
||||
Quantize the query, key, and value weights for the Transformer model.
|
||||
|
||||
Args:
|
||||
weight_np (numpy.ndarray): The original weights of query, key, and value in numpy format.
|
||||
It should be a 2D or higher dimensional tensor, where the last dimension represents the
|
||||
embedding dimension.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing:
|
||||
quanted_weight (paddle.Tensor): The quantized weights in paddle tensor format,
|
||||
with the same shape as the input weight_np.
|
||||
weight_scales (paddle.Tensor): The scaling factors for each element in the last dimension
|
||||
of the input, used to recover the original value range from the quantized weights.
|
||||
"""
|
||||
dim_embed = weight_np.shape[-1]
|
||||
weight = np.reshape(weight_np, [-1, dim_embed])
|
||||
max_value = np.max(np.abs(weight), axis=1).reshape(-1, 1)
|
||||
quanted_weight = xpu_clip_and_round(weight / max_value * 127.0)
|
||||
quanted_weight = np.reshape(quanted_weight, weight_np.shape)
|
||||
quanted_weight = paddle.to_tensor(quanted_weight, place=paddle.CPUPlace())
|
||||
weight_scales = (max_value / 127.0).astype(weight_np.dtype).reshape(-1)
|
||||
weight_scales = paddle.to_tensor(weight_scales, place=paddle.CPUPlace())
|
||||
weight_scales = paddle.cast(weight_scales, paddle.get_default_dtype())
|
||||
return quanted_weight, weight_scales
|
||||
|
||||
|
||||
def xpu_quant_weight(weight_np):
|
||||
"""
|
||||
Quantize the weight tensor for XPU devices.
|
||||
|
||||
Args:
|
||||
weight_np (numpy.ndarray): The original weight tensor in numpy format,
|
||||
expected to be a 2D array.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing two elements:
|
||||
quanted_weight (paddle.Tensor): The quantized weight tensor,
|
||||
converted to a Paddle Tensor on CPU.
|
||||
weight_scales (paddle.Tensor): The corresponding scales for the quantized
|
||||
weights, also converted to a Paddle Tensor on CPU and cast to the
|
||||
default data type.
|
||||
"""
|
||||
weight = np.transpose(weight_np, [1, 0])
|
||||
max_value = np.max(np.abs(weight), axis=1).reshape(-1, 1)
|
||||
quanted_weight = xpu_clip_and_round(weight / max_value * 127.0)
|
||||
quanted_weight = paddle.to_tensor(quanted_weight, place=paddle.CPUPlace())
|
||||
weight_scales = (max_value / 127.0).astype(weight_np.dtype).reshape(-1)
|
||||
weight_scales = paddle.to_tensor(weight_scales, place=paddle.CPUPlace())
|
||||
weight_scales = paddle.cast(weight_scales, paddle.get_default_dtype())
|
||||
return quanted_weight, weight_scales
|
Reference in New Issue
Block a user