[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,304 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import paddle
from paddle.nn.functional import scaled_dot_product_attention
from fastdeploy.model_executor.layers.attention.base_attention_backend import AttentionBackend
from fastdeploy.worker.model_runner import ForwardMeta, ForwardMode
class PaddleNativeAttnBackend(AttentionBackend):
"""
The backend class that uses paddle native attention implementation.
Which is used only for testing purpose.
"""
def __init__(self, device):
super().__init__()
self.forward_metadata = None
self.device = device
def init_attention_metadata(self, forward_meta: ForwardMeta):
"""Init the metadata for a forward pass."""
pass
def _run_sdpa_forward_extend(
self,
query: paddle.Tensor,
output: paddle.Tensor,
k_cache: paddle.Tensor,
v_cache: paddle.Tensor,
req_to_token: paddle.Tensor,
req_pool_indices: paddle.Tensor,
seq_lens: paddle.Tensor,
extend_prefix_lens: paddle.Tensor,
extend_seq_lens: paddle.Tensor,
causal=False,
):
"""Run the extend forward by using paddle native sdpa op.
Args:
query: [num_tokens, num_heads, head_size]
output: [num_tokens, num_heads, head_size]
k_cache: [max_total_num_tokens, num_heads, head_size]
v_cache: [max_total_num_tokens, num_heads, head_size]
req_to_token: [max_num_reqs, max_context_len]
req_pool_indices: [num_seqs]
seq_lens: [num_seqs]
extend_prefix_lens: [num_seqs]
extend_seq_lens: [num_seqs]
causal: bool
Returns:
output: [num_tokens, num_heads, head_size]
"""
assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
assert seq_lens.shape[0] == extend_seq_lens.shape[0]
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
# query = query.movedim(0, query.dim() - 2) =>
query = paddle.transpose(query, perm=[1, 0, 2])
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
# TODO: this loop process a sequence per iter, this is inefficient.
# Need optimize the performance later.
extend_seq_len_q = extend_seq_lens[seq_idx]
prefill_seq_len_q = extend_prefix_lens[seq_idx]
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + extend_seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
per_req_query_redudant = paddle.empty(
(per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
dtype=per_req_query.dtype,
)
per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
# per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
# per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_key = k_cache[per_req_tokens].transpose(
[query.dim() - 2, 0])
per_req_value = v_cache[per_req_tokens].transpose(
[query.dim() - 2, 0])
per_req_out_redudant = (
scaled_dot_product_attention(
per_req_query_redudant.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
is_causal=causal,
)
.squeeze(0)
.transpose([query.dim() - 2, 0])
)
output[start_q:end_q, :,
:] = per_req_out_redudant[prefill_seq_len_q:, :, :]
start_q, start_kv = end_q, end_kv
return output
def _scaled_dot_product_attention(
self,
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
is_causal: bool = False,
):
"""Paddle implementation of scaled dot-product attention."""
# query, key, value shape: [batch_size, num_heads, seq_len, head_size]
d_k = query.shape[-1]
scores = paddle.matmul(query, key.transpose([0, 1, 3, 2])) # QK^T
scores = scores / \
paddle.sqrt(paddle.to_tensor(d_k, dtype=scores.dtype))
if is_causal:
# Apply causal mask
q_len, k_len = scores.shape[-2], scores.shape[-1]
mask = paddle.triu(paddle.ones((q_len, k_len)) * -1e4, diagonal=1)
scores += mask.unsqueeze(0).unsqueeze(0)
attn_weights = paddle.nn.functional.softmax(scores, axis=-1)
output = paddle.matmul(attn_weights, value)
return output
def _run_sdpa_forward_decode(
self,
query: paddle.Tensor,
output: paddle.Tensor,
k_cache: paddle.Tensor,
v_cache: paddle.Tensor,
req_to_token: paddle.Tensor,
req_pool_indices: paddle.Tensor,
seq_lens: paddle.Tensor,
causal=False,
):
"""Run the decode forward by using paddle native sdpa op.
Args:
query: [num_tokens, num_heads, head_size]
output: [num_tokens, num_heads, head_size]
k_cache: [max_total_num_tokens, num_heads, head_size]
v_cache: [max_total_num_tokens, num_heads, head_size]
req_to_token: [max_num_reqs, max_context_len]
req_pool_indices: [num_seqs]
seq_lens: [num_seqs]
causal: bool
Returns:
output: [num_tokens, num_heads, head_size]
"""
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
query = query.transpose([1, 0, 2])
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
# TODO: this loop process a sequence per iter, this is inefficient.
# Need optimize the performance later.
seq_len_q = 1
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
# [seq_len_kv, num_heads, head_size] -> [num_heads, seq_len_kv, head_size]
per_req_key = k_cache[per_req_tokens].transpose(
[query.dim() - 2, 0])
per_req_value = v_cache[per_req_tokens].transpose(
[query.dim() - 2, 0])
per_req_out = (
self._scaled_dot_product_attention(
per_req_query.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
is_causal=causal,
)
.squeeze(0)
.transpose([query.dim() - 2, 0])
)
output[start_q:end_q, :, :] = per_req_out
start_q, start_kv = end_q, end_kv
return output
def forward_extend(
self,
q,
k,
v,
layer: paddle.nn.Layer,
forward_meta: ForwardMeta,
save_kv_cache=True,
):
"""
Run the prefill and extend(prompt cache) attention forward by using paddle native sdpa op.
"""
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty(
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = paddle.empty_like(q)
if save_kv_cache:
forward_meta.token_to_kv_pool.set_kv_buffer(
layer, forward_meta.out_cache_loc, k, v
)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
causal = True
self._run_sdpa_forward_extend(
q_,
o_,
forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_meta.req_to_token_pool.req_to_token,
forward_meta.req_pool_indices,
forward_meta.seq_lens,
forward_meta.extend_prefix_lens,
forward_meta.extend_seq_lens,
causal=causal,
)
return o
def forward_decode(
self,
q,
k,
v,
layer: paddle.nn.Layer,
forward_meta: ForwardMeta,
):
"""
Run the decoding attention forward by using paddle native sdpa op.
"""
q = q.reshape([-1, layer.tp_q_head_num * layer.qk_head_dim])
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty(
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = paddle.empty_like(q)
forward_meta.token_to_kv_pool.set_kv_buffer(
layer, forward_meta.out_cache_loc, k, v
)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
self._run_sdpa_forward_decode(
q_,
o_,
forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_meta.req_to_token_pool.req_to_token,
forward_meta.req_pool_indices,
forward_meta.seq_lens,
causal=False,
)
return o