mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
@@ -0,0 +1,304 @@
|
||||
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import paddle
|
||||
from paddle.nn.functional import scaled_dot_product_attention
|
||||
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import AttentionBackend
|
||||
from fastdeploy.worker.model_runner import ForwardMeta, ForwardMode
|
||||
|
||||
|
||||
class PaddleNativeAttnBackend(AttentionBackend):
|
||||
"""
|
||||
The backend class that uses paddle native attention implementation.
|
||||
Which is used only for testing purpose.
|
||||
"""
|
||||
|
||||
def __init__(self, device):
|
||||
super().__init__()
|
||||
self.forward_metadata = None
|
||||
self.device = device
|
||||
|
||||
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
||||
"""Init the metadata for a forward pass."""
|
||||
pass
|
||||
|
||||
def _run_sdpa_forward_extend(
|
||||
self,
|
||||
query: paddle.Tensor,
|
||||
output: paddle.Tensor,
|
||||
k_cache: paddle.Tensor,
|
||||
v_cache: paddle.Tensor,
|
||||
req_to_token: paddle.Tensor,
|
||||
req_pool_indices: paddle.Tensor,
|
||||
seq_lens: paddle.Tensor,
|
||||
extend_prefix_lens: paddle.Tensor,
|
||||
extend_seq_lens: paddle.Tensor,
|
||||
causal=False,
|
||||
):
|
||||
"""Run the extend forward by using paddle native sdpa op.
|
||||
|
||||
Args:
|
||||
query: [num_tokens, num_heads, head_size]
|
||||
output: [num_tokens, num_heads, head_size]
|
||||
k_cache: [max_total_num_tokens, num_heads, head_size]
|
||||
v_cache: [max_total_num_tokens, num_heads, head_size]
|
||||
req_to_token: [max_num_reqs, max_context_len]
|
||||
req_pool_indices: [num_seqs]
|
||||
seq_lens: [num_seqs]
|
||||
extend_prefix_lens: [num_seqs]
|
||||
extend_seq_lens: [num_seqs]
|
||||
causal: bool
|
||||
|
||||
Returns:
|
||||
output: [num_tokens, num_heads, head_size]
|
||||
"""
|
||||
|
||||
assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
|
||||
assert seq_lens.shape[0] == extend_seq_lens.shape[0]
|
||||
|
||||
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
|
||||
# query = query.movedim(0, query.dim() - 2) =>
|
||||
query = paddle.transpose(query, perm=[1, 0, 2])
|
||||
|
||||
start_q, start_kv = 0, 0
|
||||
for seq_idx in range(seq_lens.shape[0]):
|
||||
# TODO: this loop process a sequence per iter, this is inefficient.
|
||||
# Need optimize the performance later.
|
||||
|
||||
extend_seq_len_q = extend_seq_lens[seq_idx]
|
||||
prefill_seq_len_q = extend_prefix_lens[seq_idx]
|
||||
|
||||
seq_len_kv = seq_lens[seq_idx]
|
||||
end_q = start_q + extend_seq_len_q
|
||||
end_kv = start_kv + seq_len_kv
|
||||
|
||||
per_req_query = query[:, start_q:end_q, :]
|
||||
per_req_query_redudant = paddle.empty(
|
||||
(per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
|
||||
dtype=per_req_query.dtype,
|
||||
)
|
||||
|
||||
per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query
|
||||
|
||||
# get key and value from cache. per_req_tokens contains the kv cache
|
||||
# index for each token in the sequence.
|
||||
req_pool_idx = req_pool_indices[seq_idx]
|
||||
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
|
||||
# per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
||||
# per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
|
||||
per_req_key = k_cache[per_req_tokens].transpose(
|
||||
[query.dim() - 2, 0])
|
||||
per_req_value = v_cache[per_req_tokens].transpose(
|
||||
[query.dim() - 2, 0])
|
||||
|
||||
per_req_out_redudant = (
|
||||
scaled_dot_product_attention(
|
||||
per_req_query_redudant.unsqueeze(0),
|
||||
per_req_key.unsqueeze(0),
|
||||
per_req_value.unsqueeze(0),
|
||||
is_causal=causal,
|
||||
)
|
||||
.squeeze(0)
|
||||
.transpose([query.dim() - 2, 0])
|
||||
)
|
||||
output[start_q:end_q, :,
|
||||
:] = per_req_out_redudant[prefill_seq_len_q:, :, :]
|
||||
start_q, start_kv = end_q, end_kv
|
||||
return output
|
||||
|
||||
def _scaled_dot_product_attention(
|
||||
self,
|
||||
query: paddle.Tensor,
|
||||
key: paddle.Tensor,
|
||||
value: paddle.Tensor,
|
||||
is_causal: bool = False,
|
||||
):
|
||||
"""Paddle implementation of scaled dot-product attention."""
|
||||
# query, key, value shape: [batch_size, num_heads, seq_len, head_size]
|
||||
d_k = query.shape[-1]
|
||||
scores = paddle.matmul(query, key.transpose([0, 1, 3, 2])) # QK^T
|
||||
|
||||
scores = scores / \
|
||||
paddle.sqrt(paddle.to_tensor(d_k, dtype=scores.dtype))
|
||||
if is_causal:
|
||||
# Apply causal mask
|
||||
q_len, k_len = scores.shape[-2], scores.shape[-1]
|
||||
mask = paddle.triu(paddle.ones((q_len, k_len)) * -1e4, diagonal=1)
|
||||
scores += mask.unsqueeze(0).unsqueeze(0)
|
||||
|
||||
attn_weights = paddle.nn.functional.softmax(scores, axis=-1)
|
||||
output = paddle.matmul(attn_weights, value)
|
||||
return output
|
||||
|
||||
def _run_sdpa_forward_decode(
|
||||
self,
|
||||
query: paddle.Tensor,
|
||||
output: paddle.Tensor,
|
||||
k_cache: paddle.Tensor,
|
||||
v_cache: paddle.Tensor,
|
||||
req_to_token: paddle.Tensor,
|
||||
req_pool_indices: paddle.Tensor,
|
||||
seq_lens: paddle.Tensor,
|
||||
causal=False,
|
||||
):
|
||||
"""Run the decode forward by using paddle native sdpa op.
|
||||
|
||||
Args:
|
||||
query: [num_tokens, num_heads, head_size]
|
||||
output: [num_tokens, num_heads, head_size]
|
||||
k_cache: [max_total_num_tokens, num_heads, head_size]
|
||||
v_cache: [max_total_num_tokens, num_heads, head_size]
|
||||
req_to_token: [max_num_reqs, max_context_len]
|
||||
req_pool_indices: [num_seqs]
|
||||
seq_lens: [num_seqs]
|
||||
causal: bool
|
||||
|
||||
Returns:
|
||||
output: [num_tokens, num_heads, head_size]
|
||||
"""
|
||||
|
||||
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
|
||||
query = query.transpose([1, 0, 2])
|
||||
|
||||
start_q, start_kv = 0, 0
|
||||
for seq_idx in range(seq_lens.shape[0]):
|
||||
# TODO: this loop process a sequence per iter, this is inefficient.
|
||||
# Need optimize the performance later.
|
||||
|
||||
seq_len_q = 1
|
||||
seq_len_kv = seq_lens[seq_idx]
|
||||
end_q = start_q + seq_len_q
|
||||
end_kv = start_kv + seq_len_kv
|
||||
|
||||
per_req_query = query[:, start_q:end_q, :]
|
||||
|
||||
# get key and value from cache. per_req_tokens contains the kv cache
|
||||
# index for each token in the sequence.
|
||||
req_pool_idx = req_pool_indices[seq_idx]
|
||||
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
|
||||
|
||||
# [seq_len_kv, num_heads, head_size] -> [num_heads, seq_len_kv, head_size]
|
||||
per_req_key = k_cache[per_req_tokens].transpose(
|
||||
[query.dim() - 2, 0])
|
||||
per_req_value = v_cache[per_req_tokens].transpose(
|
||||
[query.dim() - 2, 0])
|
||||
|
||||
per_req_out = (
|
||||
self._scaled_dot_product_attention(
|
||||
per_req_query.unsqueeze(0),
|
||||
per_req_key.unsqueeze(0),
|
||||
per_req_value.unsqueeze(0),
|
||||
is_causal=causal,
|
||||
)
|
||||
.squeeze(0)
|
||||
.transpose([query.dim() - 2, 0])
|
||||
)
|
||||
output[start_q:end_q, :, :] = per_req_out
|
||||
start_q, start_kv = end_q, end_kv
|
||||
|
||||
return output
|
||||
|
||||
def forward_extend(
|
||||
self,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
layer: paddle.nn.Layer,
|
||||
forward_meta: ForwardMeta,
|
||||
save_kv_cache=True,
|
||||
):
|
||||
"""
|
||||
Run the prefill and extend(prompt cache) attention forward by using paddle native sdpa op.
|
||||
"""
|
||||
if layer.qk_head_dim != layer.v_head_dim:
|
||||
o = q.new_empty(
|
||||
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
||||
else:
|
||||
o = paddle.empty_like(q)
|
||||
|
||||
if save_kv_cache:
|
||||
forward_meta.token_to_kv_pool.set_kv_buffer(
|
||||
layer, forward_meta.out_cache_loc, k, v
|
||||
)
|
||||
|
||||
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
|
||||
|
||||
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
|
||||
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
|
||||
|
||||
causal = True
|
||||
|
||||
self._run_sdpa_forward_extend(
|
||||
q_,
|
||||
o_,
|
||||
forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
||||
forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
||||
forward_meta.req_to_token_pool.req_to_token,
|
||||
forward_meta.req_pool_indices,
|
||||
forward_meta.seq_lens,
|
||||
forward_meta.extend_prefix_lens,
|
||||
forward_meta.extend_seq_lens,
|
||||
causal=causal,
|
||||
)
|
||||
return o
|
||||
|
||||
def forward_decode(
|
||||
self,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
layer: paddle.nn.Layer,
|
||||
forward_meta: ForwardMeta,
|
||||
):
|
||||
"""
|
||||
Run the decoding attention forward by using paddle native sdpa op.
|
||||
"""
|
||||
q = q.reshape([-1, layer.tp_q_head_num * layer.qk_head_dim])
|
||||
|
||||
if layer.qk_head_dim != layer.v_head_dim:
|
||||
o = q.new_empty(
|
||||
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
||||
else:
|
||||
o = paddle.empty_like(q)
|
||||
|
||||
forward_meta.token_to_kv_pool.set_kv_buffer(
|
||||
layer, forward_meta.out_cache_loc, k, v
|
||||
)
|
||||
|
||||
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
|
||||
|
||||
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
|
||||
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
|
||||
|
||||
self._run_sdpa_forward_decode(
|
||||
q_,
|
||||
o_,
|
||||
forward_meta.token_to_kv_pool.get_key_buffer(layer.layer_id),
|
||||
forward_meta.token_to_kv_pool.get_value_buffer(layer.layer_id),
|
||||
forward_meta.req_to_token_pool.req_to_token,
|
||||
forward_meta.req_pool_indices,
|
||||
forward_meta.seq_lens,
|
||||
causal=False,
|
||||
)
|
||||
|
||||
return o
|
Reference in New Issue
Block a user