[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,201 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import io
import os
import random
import numpy as np
from PIL import Image
from .utils.io_utils import EXTRACTED_FRAME_DIR, get_downloadable, get_filename
from .utils.video_utils import VideoReaderWrapper
from fastdeploy.utils import data_processor_logger
def read_video_decord(video_path, save_to_disk):
"""get reader and meta by decord"""
data_in_mem = False
# video_path = get_downloadable(video_path, save_to_disk=save_to_disk)
if isinstance(video_path, VideoReaderWrapper):
data_in_mem = True
video_reader = video_path
else:
if isinstance(video_path, bytes):
video_path = io.BytesIO(video_path)
video_reader = VideoReaderWrapper(video_path, num_threads=1)
vlen = len(video_reader)
fps = video_reader.get_avg_fps()
duration = vlen / float(fps)
video_meta = {"fps": fps, "duration": duration, "num_of_frame": vlen}
return video_reader, video_meta, video_path
def get_frame_indices(
vlen,
target_frames=-1,
target_fps=-1,
frames_sample="middle",
fix_start=None,
input_fps=-1,
):
"""
取出对应的frame index
"""
assert frames_sample in ["rand", "middle", "leading"]
if target_frames > 0:
assert target_fps <= 0, "target_fps must be negative if target_frames is given."
if target_frames > vlen:
acc_samples = vlen
data_processor_logger.info(
f"target_frames={target_frames} is larger than video length {vlen}, "
f"will sample {acc_samples} frames."
)
else:
acc_samples = target_frames
data_processor_logger.debug(f"sampling at target_frames={target_frames}, frames_sample={frames_sample}")
# split the video into `acc_samples` intervals, and sample from each interval.
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
ranges = []
for idx, interv in enumerate(intervals[:-1]):
ranges.append((interv, intervals[idx + 1] - 1))
if frames_sample == "rand":
try:
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
except Exception as e:
frame_indices = np.random.permutation(vlen)[:acc_samples]
frame_indices.sort()
frame_indices = list(frame_indices)
elif fix_start is not None:
frame_indices = [x[0] + fix_start for x in ranges]
elif frames_sample == "leading":
frame_indices = [x[0] for x in ranges]
elif frames_sample == "middle":
frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
else:
raise NotImplementedError
elif target_fps > 0:
assert target_frames <= 0, "target_frames must be negative if target_fps is given."
assert input_fps > 0, "input_fps must be provided if target_fps is given."
data_processor_logger.info(f"sampling at fps={target_fps}, frames_sample={frames_sample}")
duration = float(vlen) / input_fps
delta = 1 / target_fps # gap between frames, this is also the clip length each frame represents
if frames_sample == "middle":
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
elif frames_sample == "leading":
frame_seconds = np.arange(0, duration, delta)
if frames_sample == "rand":
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
rand_offset = np.random.rand(*(frame_seconds.shape)) - 0.5
frame_seconds += rand_offset * delta
frame_indices = np.around(frame_seconds * input_fps).astype(int)
frame_indices = [e for e in frame_indices if e < vlen]
else:
raise ValueError("Must provide either positive target_fps or positive target_frames.")
return frame_indices
def read_frames_decord(
video_path,
video_reader,
video_meta,
target_frames=-1,
target_fps=-1,
frames_sample="middle",
fix_start=None,
save_to_disk=False,
cache_dir=EXTRACTED_FRAME_DIR,
frame_indices=None,
tol=10,
):
"""get frames by decord"""
if frame_indices is None:
frame_indices = get_frame_indices(
video_meta["num_of_frame"],
target_frames=target_frames,
target_fps=target_fps,
frames_sample=frames_sample,
fix_start=fix_start,
input_fps=video_meta["fps"],
)
frames = []
for frame_indice_index in range(0, len(frame_indices)):
frame_indice = frame_indices[frame_indice_index]
try:
frames.append(video_reader[frame_indice].asnumpy()) # (T, H, W, C)
except Exception as e:
data_processor_logger.debug(f"encounter error when get frame: {frame_indice}, error: {e}")
previous_counter = 1
later_counter = 1
previous_after_flag = True
if frame_indice == 0 or frame_indice == len(video_reader) - 1:
cur_tol = tol * 2
else:
cur_tol = tol
while previous_counter < cur_tol or later_counter < cur_tol:
if previous_after_flag:
if frame_indice - previous_counter < 0:
previous_counter += 1
previous_after_flag = not previous_after_flag
continue
try:
frames.append(video_reader[frame_indice - previous_counter].asnumpy())
data_processor_logger.info(f"replace {frame_indice}-th frame with {frame_indice-previous_counter}-th frame")
frame_indices[frame_indice_index] = frame_indice - previous_counter
break
except Exception as e:
previous_counter += 1
else:
if frame_indice + later_counter >= len(video_reader):
later_counter += 1
previous_after_flag = not previous_after_flag
continue
try:
frames.append(video_reader[frame_indice + later_counter].asnumpy())
data_processor_logger.info(f"replace {frame_indice}-th frame with {frame_indice+later_counter}-th frame")
frame_indices[frame_indice_index] = frame_indice + later_counter
break
except Exception as e:
later_counter += 1
previous_after_flag = not previous_after_flag
frames = np.stack(frames, axis=0)
assert len(frames) == len(frame_indices), f"len(frames): {len(frames)} != len(frame_indices): {len(frame_indices)}"
ret = []
url_sha1 = get_filename()
for idx, frame in enumerate(frames):
tmp = Image.fromarray(frame, "RGB")
if save_to_disk:
save_path = os.path.join(cache_dir, f"{url_sha1}", f"{idx}.png")
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
tmp.save(save_path)
tmp = save_path
ret.append(tmp)
time_stamps = [frame_idx * video_meta["duration"] / video_meta["num_of_frame"] for frame_idx in frame_indices]
return ret, frame_indices, time_stamps