mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
374
fastdeploy/entrypoints/openai/serving_chat.py
Normal file
374
fastdeploy/entrypoints/openai/serving_chat.py
Normal file
@@ -0,0 +1,374 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import aiozmq
|
||||
from aiozmq import zmq
|
||||
import json
|
||||
import time
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Callable, Optional, Union, List
|
||||
import uuid
|
||||
|
||||
from fastapi import Request
|
||||
from pydantic import BaseModel
|
||||
from fastdeploy.entrypoints.openai.protocol import (
|
||||
ChatCompletionRequest,
|
||||
DeltaMessage,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatCompletionStreamResponse,
|
||||
ChatCompletionResponseStreamChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
ChatCompletionResponse,
|
||||
ErrorResponse,
|
||||
)
|
||||
from fastdeploy.metrics.work_metrics import work_process_metrics
|
||||
|
||||
from fastdeploy.utils import api_server_logger
|
||||
|
||||
from fastdeploy.engine.request import RequestOutput
|
||||
|
||||
|
||||
|
||||
class OpenAIServingChat:
|
||||
"""
|
||||
Implementation of OpenAI-compatible chat completion API endpoints.
|
||||
|
||||
Handles both streaming and non-streaming chat completion requests.
|
||||
|
||||
Attributes:
|
||||
engine_client: Client for communicating with the LLM engine
|
||||
pid: Process ID for ZMQ communication
|
||||
"""
|
||||
|
||||
def __init__(self, engine_client, pid):
|
||||
self.engine_client = engine_client
|
||||
self.pid = pid
|
||||
|
||||
async def create_chat_completion(
|
||||
self,
|
||||
request: ChatCompletionRequest
|
||||
):
|
||||
"""
|
||||
Create chat completion based on the given request.
|
||||
|
||||
Args:
|
||||
request (ChatCompletionRequest): Chat completion request parameters
|
||||
|
||||
Returns:
|
||||
Union[AsyncGenerator, ChatCompletionResponse, ErrorResponse]:
|
||||
- Streaming generator if request.stream=True
|
||||
- Full completion response if request.stream=False
|
||||
- ErrorResponse if validation fails
|
||||
"""
|
||||
if request.user is not None:
|
||||
request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
|
||||
else:
|
||||
request_id = f"chatcmpl-{uuid.uuid4()}"
|
||||
api_server_logger.info(f"create chat completion request: {request_id}")
|
||||
|
||||
try:
|
||||
current_req_dict = request.to_dict_for_infer(request_id)
|
||||
current_req_dict["arrival_time"] = time.time()
|
||||
self.engine_client.format_and_add_data(current_req_dict)
|
||||
|
||||
except ValueError as e:
|
||||
return ErrorResponse(code=400, message=str(e))
|
||||
|
||||
del current_req_dict
|
||||
|
||||
if request.stream:
|
||||
return self.chat_completion_stream_generator(
|
||||
request, request_id, request.model)
|
||||
else:
|
||||
try:
|
||||
return await self.chat_completion_full_generator(
|
||||
request, request_id, request.model)
|
||||
except ValueError as e:
|
||||
return ErrorResponse(code=400, message=str(e))
|
||||
|
||||
def _create_streaming_error_response(self, message: str) -> str:
|
||||
"""
|
||||
Create an error response in streaming format.
|
||||
|
||||
Args:
|
||||
message (str): Error message to include
|
||||
|
||||
Returns:
|
||||
str: JSON-formatted error response
|
||||
"""
|
||||
error_response = ErrorResponse(
|
||||
code=400,
|
||||
message=message,
|
||||
)
|
||||
return error_response.model_dump_json()
|
||||
|
||||
async def chat_completion_stream_generator(
|
||||
self,
|
||||
request: ChatCompletionRequest,
|
||||
request_id: str,
|
||||
model_name: str
|
||||
):
|
||||
"""
|
||||
Generator for streaming chat completion responses.
|
||||
|
||||
Args:
|
||||
request (ChatCompletionRequest): Original request parameters
|
||||
request_id (str): Unique request identifier
|
||||
model_name (str): Name of the model being used
|
||||
|
||||
Yields:
|
||||
str: Server-Sent Events (SSE) formatted chunks containing:
|
||||
- Partial completion results
|
||||
- Usage statistics (if enabled)
|
||||
- Error messages (if any)
|
||||
|
||||
Note:
|
||||
Uses ZMQ for inter-process communication with the engine.
|
||||
Maintains streaming protocol compatibility with OpenAI API.
|
||||
"""
|
||||
created_time = int(time.time())
|
||||
chunk_object_type: str = "chat.completion.chunk"
|
||||
first_iteration = True
|
||||
previous_num_tokens = 0
|
||||
num_prompt_tokens = 0
|
||||
num_choices = 1
|
||||
max_streaming_response_tokens = 1
|
||||
if request.metadata is not None and request.metadata.get("max_streaming_response_tokens", 1) > 1:
|
||||
max_streaming_response_tokens = request.metadata["max_streaming_response_tokens"]
|
||||
|
||||
stream_options = request.stream_options
|
||||
if stream_options is None:
|
||||
include_usage = False
|
||||
include_continuous_usage = False
|
||||
else:
|
||||
include_usage = stream_options.include_usage
|
||||
include_continuous_usage = stream_options.continuous_usage_stats
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[],
|
||||
model=model_name
|
||||
)
|
||||
try:
|
||||
dealer = await aiozmq.create_zmq_stream(
|
||||
zmq.DEALER,
|
||||
connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
|
||||
)
|
||||
dealer.write([b"", request_id.encode('utf-8')])
|
||||
choices = []
|
||||
while num_choices > 0:
|
||||
try:
|
||||
raw_data = await asyncio.wait_for(dealer.read(), timeout=300)
|
||||
except asyncio.TimeoutError:
|
||||
status, msg = self.engine_client.check_health()
|
||||
if not status:
|
||||
if choices:
|
||||
chunk.choices = choices
|
||||
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
||||
raise ValueError(f"Engine is not healthy: {msg}")
|
||||
else:
|
||||
continue
|
||||
|
||||
res = json.loads(raw_data[-1].decode('utf-8'))
|
||||
if res.get("error_code", 200) != 200:
|
||||
raise ValueError("{}".format(res["error_msg"]))
|
||||
self.engine_client.data_processor.process_response_dict(res, stream=True)
|
||||
|
||||
if res['metrics']['first_token_time'] is not None:
|
||||
arrival_time = res['metrics']['first_token_time']
|
||||
inference_start_time = res['metrics']['inference_start_time']
|
||||
else:
|
||||
arrival_time = res['metrics']['arrival_time'] - inference_start_time
|
||||
if first_iteration:
|
||||
num_prompt_tokens = len(res["prompt_token_ids"])
|
||||
num_cached_tokens = res.get("num_cached_tokens", 0)
|
||||
for i in range(num_choices):
|
||||
choice = ChatCompletionResponseStreamChoice(
|
||||
index=i,
|
||||
delta=DeltaMessage(role="assistant", content="", reasoning_content="")
|
||||
)
|
||||
if request.metadata is not None and request.metadata.get("training", False):
|
||||
choice.delta.token_ids = list(res["prompt_token_ids"])
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[choice],
|
||||
model=model_name
|
||||
)
|
||||
if include_continuous_usage:
|
||||
chunk.usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=0,
|
||||
total_tokens=num_prompt_tokens
|
||||
)
|
||||
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
|
||||
first_iteration = False
|
||||
|
||||
output = res["outputs"]
|
||||
delta_text = output["text"]
|
||||
|
||||
previous_num_tokens += len(output["token_ids"])
|
||||
delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
|
||||
token_ids=output.get("token_ids"))
|
||||
|
||||
choice = ChatCompletionResponseStreamChoice(
|
||||
index=output["index"],
|
||||
delta=delta_message,
|
||||
arrival_time=arrival_time
|
||||
)
|
||||
if res["finished"]:
|
||||
num_choices -= 1
|
||||
work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
|
||||
if request.max_tokens is None or output["index"] + 1 != request.max_tokens:
|
||||
choice.finish_reason = "stop"
|
||||
else:
|
||||
choice.finish_reason = "length"
|
||||
|
||||
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
|
||||
choice.delta.token_ids = output["token_ids"]
|
||||
if include_continuous_usage:
|
||||
chunk.usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=previous_num_tokens,
|
||||
total_tokens=num_prompt_tokens + previous_num_tokens
|
||||
)
|
||||
choices.append(choice)
|
||||
|
||||
if len(choices) == max_streaming_response_tokens or res["finished"]:
|
||||
chunk.choices = choices
|
||||
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
||||
choices = []
|
||||
|
||||
|
||||
if include_usage:
|
||||
completion_tokens = previous_num_tokens
|
||||
usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=num_prompt_tokens + completion_tokens
|
||||
)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
created=created_time,
|
||||
choices=[],
|
||||
model=model_name,
|
||||
usage=usage
|
||||
)
|
||||
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
||||
|
||||
except Exception as e:
|
||||
error_data = self._create_streaming_error_response(str(e))
|
||||
yield f"data: {error_data}\n\n"
|
||||
finally:
|
||||
dealer.close()
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
async def chat_completion_full_generator(
|
||||
self,
|
||||
request: ChatCompletionRequest,
|
||||
request_id: str,
|
||||
model_name: str
|
||||
):
|
||||
"""
|
||||
Generate complete chat response in one-shot mode.
|
||||
|
||||
Args:
|
||||
request (ChatCompletionRequest): Original request parameters
|
||||
request_id (str): Unique request identifier
|
||||
model_name (str): Name of the model being used
|
||||
|
||||
Returns:
|
||||
ChatCompletionResponse: Complete chat response with:
|
||||
- Generated message
|
||||
- Usage statistics
|
||||
- Finish reason
|
||||
|
||||
Raises:
|
||||
ValueError: If engine communication fails or times out
|
||||
"""
|
||||
created_time = int(time.time())
|
||||
final_res = None
|
||||
try:
|
||||
dealer = await aiozmq.create_zmq_stream(
|
||||
zmq.DEALER,
|
||||
connect=f"ipc:///dev/shm/router_{self.pid}.ipc"
|
||||
)
|
||||
dealer.write([b"", request_id.encode('utf-8')])
|
||||
final_res = None
|
||||
previous_num_tokens = 0
|
||||
while True:
|
||||
try:
|
||||
raw_data = await asyncio.wait_for(dealer.read(), timeout=300)
|
||||
except asyncio.TimeoutError:
|
||||
status, msg = self.engine_client.check_health()
|
||||
if not status:
|
||||
raise ValueError(f"Engine is not healthy: {msg}")
|
||||
else:
|
||||
continue
|
||||
|
||||
data = json.loads(raw_data[-1].decode('utf-8'))
|
||||
if data.get("error_code", 200) != 200:
|
||||
raise ValueError("{}".format(data["error_msg"]))
|
||||
data = self.engine_client.data_processor.process_response_dict(data, stream=False)
|
||||
# api_server_logger.debug(f"Client {request_id} received: {data}")
|
||||
previous_num_tokens += len(data["outputs"]["token_ids"])
|
||||
if data["finished"]:
|
||||
final_res = data
|
||||
break
|
||||
finally:
|
||||
dealer.close()
|
||||
|
||||
choices = []
|
||||
output = final_res["outputs"]
|
||||
message = ChatMessage(
|
||||
role="assistant",
|
||||
content=output["text"],
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
token_ids=output.get("token_ids")
|
||||
)
|
||||
|
||||
choice = ChatCompletionResponseChoice(
|
||||
index=output["index"],
|
||||
message=message,
|
||||
finish_reason=None
|
||||
)
|
||||
if request.max_tokens is None or output["index"] + 1 != request.max_tokens:
|
||||
|
||||
choice.finish_reason = "stop"
|
||||
else:
|
||||
choice.finish_reason = "length"
|
||||
choices.append(choice)
|
||||
|
||||
num_prompt_tokens = len(final_res["prompt_token_ids"])
|
||||
num_generated_tokens = previous_num_tokens
|
||||
usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
completion_tokens=num_generated_tokens,
|
||||
total_tokens=num_prompt_tokens + num_generated_tokens
|
||||
)
|
||||
work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
|
||||
return ChatCompletionResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=choices,
|
||||
usage=usage
|
||||
)
|
Reference in New Issue
Block a user