[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,445 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
import time
from typing import Any, ClassVar, Literal, Optional, Union, List, Dict
from fastapi import UploadFile
from pydantic import (BaseModel, ConfigDict, Field, TypeAdapter,
ValidationInfo, field_validator, model_validator)
from typing_extensions import TypeAlias
#from openai.types.chat import ChatCompletionMessageParam
from fastdeploy.entrypoints.chat_utils import ChatCompletionMessageParam, parse_chat_messages
from fastdeploy.engine.sampling_params import SamplingParams
class ErrorResponse(BaseModel):
"""
Standard error response format following OpenAI API specification.
Attributes:
object (str): Always "error"
message (str): Human-readable error message
code (int): HTTP status code
"""
object: str = "error"
message: str
code: int
class PromptTokenUsageInfo(BaseModel):
"""
Token usage information specific to prompt processing.
Attributes:
cached_tokens (Optional[int]): Number of tokens served from cache
"""
cached_tokens: Optional[int] = None
class UsageInfo(BaseModel):
"""
Token usage statistics for API requests.
Attributes:
prompt_tokens (int): Number of tokens in the prompt
total_tokens (int): Total tokens used (prompt + completion)
completion_tokens (Optional[int]): Tokens generated in completion
prompt_tokens_details (Optional[PromptTokenUsageInfo]): Detailed prompt token info
"""
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
class ChatMessage(BaseModel):
"""
Single message in a chat conversation.
Attributes:
role (str): Role of the message sender (system/user/assistant)
content (str): Text content of the message
reasoning_content (Optional[str]): Additional reasoning/explanation
"""
role: str
content: str
reasoning_content: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
"""
Single choice in a chat completion response.
Attributes:
index (int): Choice index
message (ChatMessage): Generated chat message
finish_reason (Optional[Literal["stop", "length"]]): Reason for stopping generation
"""
index: int
message: ChatMessage
finish_reason: Optional[Literal["stop", "length"]]
class ChatCompletionResponse(BaseModel):
"""
Standard chat completion response format.
Attributes:
id (str): Unique request identifier
object (str): Always "chat.completion"
created (int): Unix timestamp of creation
model (str): Model name used
choices (List[ChatCompletionResponseChoice]): Generated response choices
usage (UsageInfo): Token usage statistics
"""
id: str
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
class DeltaMessage(BaseModel):
"""
Incremental message update for streaming responses.
Attributes:
role (Optional[str]): Role of the message sender
content (Optional[str]): Partial message content
token_ids (Optional[List[int]]): Token IDs for the delta content
reasoning_content (Optional[str]): Partial reasoning content
"""
role: Optional[str] = None
content: Optional[str] = None
token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
"""
Streaming choice in a chat completion response.
Attributes:
index (int): Choice index
delta (DeltaMessage): Incremental message update
finish_reason (Optional[Literal["stop", "length"]]): Reason for stopping
arrival_time (Optional[float]): Timestamp when chunk was generated
"""
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
arrival_time: Optional[float] = None
class ChatCompletionStreamResponse(BaseModel):
"""
Streaming chat completion response format.
Attributes:
id (str): Unique request identifier
object (str): Always "chat.completion.chunk"
created (int): Unix timestamp of creation
model (str): Model name used
choices (List[ChatCompletionResponseStreamChoice]): Streaming choices
usage (Optional[UsageInfo]): Token usage (if enabled in stream options)
"""
id: str
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
class CompletionResponseChoice(BaseModel):
"""
Single choice in a text completion response.
Attributes:
index (int): Choice index
text (str): Generated text
token_ids (Optional[List[int]]): Token IDs for generated text
arrival_time (Optional[float]): Timestamp when generated
logprobs (Optional[int]): Log probabilities
reasoning_content (Optional[str]): Additional reasoning
finish_reason (Optional[Literal["stop", "length"]]): Reason for stopping
"""
index: int
text: str
token_ids: Optional[List[int]] = None
arrival_time: Optional[float] = None
logprobs: Optional[int] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length"]]
class CompletionResponse(BaseModel):
"""
Standard text completion response format.
Attributes:
id (str): Unique request identifier
object (str): Always "text_completion"
created (int): Unix timestamp of creation
model (str): Model name used
choices (List[CompletionResponseChoice]): Generated response choices
usage (UsageInfo): Token usage statistics
"""
id: str
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionResponseStreamChoice(BaseModel):
"""
Streaming choice in a text completion response.
Attributes:
index (int): Choice index
text (str): Partial generated text
arrival_time (float): Timestamp when chunk was generated
token_ids (Optional[List[int]]): Token IDs for partial text
logprobs (Optional[float]): Log probabilities
reasoning_content (Optional[str]): Partial reasoning
finish_reason (Optional[Literal["stop", "length"]]): Reason for stopping
"""
index: int
text: str
arrival_time: float = None
token_ids: Optional[List[int]] = None
logprobs: Optional[float] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length"]] = None
class CompletionStreamResponse(BaseModel):
"""
Streaming text completion response format.
Attributes:
id (str): Unique request identifier
object (str): Always "text_completion"
created (int): Unix timestamp of creation
model (str): Model name used
choices (List[CompletionResponseStreamChoice]): Streaming choices
usage (Optional[UsageInfo]): Token usage (if enabled in stream options)
"""
id: str
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
class StreamOptions(BaseModel):
"""
Configuration options for streaming responses.
Attributes:
include_usage (Optional[bool]): Whether to include usage stats
continuous_usage_stats (Optional[bool]): Whether to send incremental usage
"""
include_usage: Optional[bool] = True
continuous_usage_stats: Optional[bool] = False
class CompletionRequest(BaseModel):
"""
Text completion request parameters following OpenAI API specification.
Attributes:
model (Optional[str]): Model name (default: "default")
prompt (Union[List[int], List[List[int]], str, List[str]]): Input prompt(s)
best_of (Optional[int]): Number of samples to generate
echo (Optional[bool]): Whether to echo the prompt
frequency_penalty (Optional[float]): Penalize repeated tokens
logprobs (Optional[int]): Number of logprobs to return
max_tokens (Optional[int]): Maximum tokens to generate (default: 16)
n (int): Number of completions (default: 1)
presence_penalty (Optional[float]): Penalize new tokens
seed (Optional[int]): Random seed
stop (Optional[Union[str, List[str]]]): Stop sequences
stream (Optional[bool]): Whether to stream response
stream_options (Optional[StreamOptions]): Streaming configuration
suffix (Optional[dict]): Suffix to append
temperature (Optional[float]): Sampling temperature
top_p (Optional[float]): Nucleus sampling probability
user (Optional[str]): User identifier
repetition_penalty (Optional[float]): Repetition penalty factor
stop_token_ids (Optional[List[int]]): Token IDs to stop generation
"""
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
model: Optional[str] = "default"
prompt: Union[List[int], List[List[int]], str, List[str]]
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = 0.0
logprobs: Optional[int] = None
max_tokens: Optional[int] = 16
n: int = 1
presence_penalty: Optional[float] = 0.0
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
suffix: Optional[dict] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
user: Optional[str] = None
# doc: begin-completion-sampling-params
repetition_penalty: Optional[float] = None
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
# doc: end-completion-sampling-params
def to_dict_for_infer(self, request_id=None, prompt=None):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
req_dict = {}
if request_id is not None:
req_dict['request_id'] = request_id
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if self.suffix is not None:
for key, value in self.suffix.items():
req_dict[key] = value
if prompt is not None:
req_dict['prompt'] = prompt
if isinstance(prompt[0], int):
req_dict["prompt_token_ids"] = prompt
del req_dict["prompt"]
return req_dict
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
"""
Validate stream options
"""
if data.get("stream_options") and not data.get("stream"):
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data
class ChatCompletionRequest(BaseModel):
"""
Chat completion request parameters following OpenAI API specification.
Attributes:
messages (Union[List[ChatCompletionMessageParam], List[int]]): Conversation history
model (Optional[str]): Model name (default: "default")
frequency_penalty (Optional[float]): Penalize repeated tokens
max_tokens (Optional[int]): Deprecated - max tokens to generate
max_completion_tokens (Optional[int]): Max tokens in completion
n (Optional[int]): Number of completions (default: 1)
presence_penalty (Optional[float]): Penalize new tokens
seed (Optional[int]): Random seed
stop (Optional[Union[str, List[str]]]): Stop sequences
stream (Optional[bool]): Whether to stream response
stream_options (Optional[StreamOptions]): Streaming configuration
temperature (Optional[float]): Sampling temperature
top_p (Optional[float]): Nucleus sampling probability
user (Optional[str]): User identifier
metadata (Optional[dict]): Additional metadata
repetition_penalty (Optional[float]): Repetition penalty factor
stop_token_ids (Optional[List[int]]): Token IDs to stop generation
"""
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: Union[List[ChatCompletionMessageParam], List[int]]
model: Optional[str] = "default"
frequency_penalty: Optional[float] = 0.0
# remove max_tokens when field is removed from OpenAI API
max_tokens: Optional[int] = Field(
default=None,
deprecated='max_tokens is deprecated in favor of the max_completion_tokens field')
max_completion_tokens: Optional[int] = None
n: Optional[int] = 1
presence_penalty: Optional[float] = 0.0
seed: Optional[int] = None
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
user: Optional[str] = None
metadata: Optional[dict] = None
# doc: begin-chat-completion-sampling-params
repetition_penalty: Optional[float] = None
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
# doc: end-chat-completion-sampling-params
def to_dict_for_infer(self, request_id=None):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
req_dict = {}
if request_id is not None:
req_dict['request_id'] = request_id
if self.metadata is not None:
for key, value in self.metadata.items():
req_dict[key] = value
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if isinstance(self.messages[0], int):
req_dict["prompt_token_ids"] = self.messages
del req_dict["messages"]
if "raw_request" in req_dict and not req_dict["raw_request"]:
req_dict["prompt"] = req_dict["messages"][0]["content"]
del req_dict["messages"]
return req_dict
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
"""
Validate stream options
"""
if data.get("stream_options") and not data.get("stream"):
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data