[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,231 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Literal, Union, List
from typing_extensions import Required, TypedDict, TypeAlias
from openai.types.chat import ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam
from openai.types.chat import ChatCompletionMessageParam as OpenAIChatCompletionMessageParam
from urllib.parse import urlparse
import requests
from copy import deepcopy
from fastdeploy.input.multimodal.video import VideoMediaIO
from fastdeploy.input.multimodal.image import ImageMediaIO
class VideoURL(TypedDict, total=False):
"""
Represents a video URL or base64 encoded video data.
Attributes:
url: Required string containing either a URL or base64 encoded video data
"""
url: Required[str]
"""Either a URL of the video or the base64 encoded video data"""
class CustomChatCompletionContentPartVideoParam(TypedDict, total=False):
"""
Custom video content part parameter for chat completion.
Attributes:
video_url: Required VideoURL object containing video data
type: Required literal string "video_url" indicating content type
"""
video_url: Required[VideoURL]
type: Required[Literal["video_url"]]
"""The type of the content type."""
CustomChatCompletionContentPartParam: TypeAlias = Union[
OpenAIChatCompletionContentPartParam, CustomChatCompletionContentPartVideoParam
]
class CustomUserChatCompletionMessageParam(TypedDict, total=False):
"""
Custom user chat message parameter for chat completion.
Attributes:
content: Required content of the message (string or list of content parts)
role: Required string indicating the role of message author (should be 'user')
name: Optional name to differentiate between participants of same role
"""
content: Required[Union[str, List[CustomChatCompletionContentPartParam]]]
"""The contents of the user message"""
role: Required[str]
"""The role of the messages author, in this case `user`."""
name: str
"""An optional name for the participant
Provides the model information to differentiate between participants of the same role.
"""
ChatCompletionMessageParam = Union[OpenAIChatCompletionMessageParam, CustomUserChatCompletionMessageParam]
class MultiModalPartParser(object):
"""
Parser for handling multi-modal content parts (images, videos, etc.)
Attributes:
image_io: ImageMediaIO instance for handling image operations
video_io: VideoMediaIO instance for handling video operations
"""
def __init__(self):
self.image_io = ImageMediaIO()
self.video_io = VideoMediaIO(self.image_io)
def parse_image(self, image_url):
"""
Parse an image from given URL.
Args:
image_url: URL or base64 string of the image
Returns:
Parsed image data
"""
# image_io = ImageMediaIO()
return self.load_from_url(image_url, self.image_io)
def parse_video(self, video_url):
"""
Parse a video from given URL.
Args:
video_url: URL or base64 string of the video
Returns:
Parsed video data
"""
# video_io = VideoMediaIO()
return self.get_bytes(video_url)
def load_from_url(self, url, media_io):
"""
Load media content from URL or base64 string.
Args:
url: URL or base64 string of the media
media_io: MediaIO instance for handling the specific media type
Returns:
Loaded media data
"""
parsed = urlparse(url)
if parsed.scheme.startswith("http"):
media_bytes = self.get_bytes(url)
return media_io.load_bytes(media_bytes)
if parsed.scheme.startswith("data"):
data_spec, data = parsed.path.split(",", 1)
media_type, data_type = data_spec.split(";", 1)
return media_io.load_base64(media_type, data)
if parsed.scheme.startswith("file"):
localpath = parsed.path
return media_io.load_file(localpath)
def get_bytes(self, url):
"""
Fetch raw bytes from a URL.
Args:
url: URL to fetch data from
Returns:
bytes: Raw content from the URL
"""
# TODO: Add error handling and timeout
return requests.get(url).content
def parse_content_part(mm_parser, part):
"""
Parse a single content part (text, image or video).
Currently supports OpenAI-compatible formats.
Args:
mm_parser: MultiModalPartParser instance
part: Content part to parse
Returns:
dict: Parsed content part
Raises:
ValueError: If content part type is unknown
"""
part_type = part.get("type", None)
if part_type == "text":
return part
if part_type == "image_url":
content = part.get("image_url", {}).get("url", None)
image = mm_parser.parse_image(content)
parsed = deepcopy(part)
del parsed["image_url"]["url"]
parsed["image"] = image
parsed["type"] = "image"
return parsed
if part_type == "video_url":
content = part.get("video_url", {}).get("url", None)
video = mm_parser.parse_video(content)
parsed = deepcopy(part)
del parsed["video_url"]["url"]
parsed["video"] = video
parsed["type"] = "video"
return parsed
raise ValueError(f"Unknown content part type: {part_type}")
#TODO async
#def parse_chat_messages(messages: List[ChatCompletionMessageParam]):
def parse_chat_messages(messages):
"""
Parse a list of chat messages into standardized format.
Args:
messages: List of chat messages to parse
Returns:
list: Parsed conversation in standardized format
"""
mm_parser = MultiModalPartParser()
conversation = []
for message in messages:
role = message["role"]
content = message["content"]
parsed_content = []
if content is None:
parsed_content = []
elif isinstance(content, str):
parsed_content = [{"type": "text", "text": content}]
else:
parsed_content = [parse_content_part(mm_parser, part) for part in content]
conversation.append({"role": role, "content": parsed_content})
return conversation