mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-02 23:32:48 +08:00
[LLM] First commit the llm deployment code
This commit is contained in:
447
fastdeploy/engine/args_utils.py
Normal file
447
fastdeploy/engine/args_utils.py
Normal file
@@ -0,0 +1,447 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from dataclasses import asdict, dataclass
|
||||
from dataclasses import fields as dataclass_fields
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from fastdeploy.engine.config import (CacheConfig, Config, ModelConfig,
|
||||
TaskOption)
|
||||
from fastdeploy.scheduler.config import SchedulerConfig
|
||||
from fastdeploy.utils import FlexibleArgumentParser
|
||||
|
||||
|
||||
def nullable_str(x: str) -> Optional[str]:
|
||||
"""
|
||||
Convert an empty string to None, preserving other string values.
|
||||
"""
|
||||
return x if x else None
|
||||
|
||||
|
||||
@dataclass
|
||||
class EngineArgs:
|
||||
# Model configuration parameters
|
||||
model: str = ""
|
||||
"""
|
||||
The name or path of the model to be used.
|
||||
"""
|
||||
model_config_name: Optional[str] = "config.json"
|
||||
"""
|
||||
The name of the model configuration file.
|
||||
"""
|
||||
tokenizer: str = None
|
||||
"""
|
||||
The name or path of the tokenizer (defaults to model path if not provided).
|
||||
"""
|
||||
max_model_len: int = 2048
|
||||
"""
|
||||
Maximum context length supported by the model.
|
||||
"""
|
||||
tensor_parallel_size: int = 1
|
||||
"""
|
||||
Degree of tensor parallelism.
|
||||
"""
|
||||
block_size: int = 64
|
||||
"""
|
||||
Number of tokens in one processing block.
|
||||
"""
|
||||
task: TaskOption = "generate"
|
||||
"""
|
||||
The task to be executed by the model.
|
||||
"""
|
||||
max_num_seqs: int = 8
|
||||
"""
|
||||
Maximum number of sequences per iteration.
|
||||
"""
|
||||
mm_processor_kwargs: Optional[Dict[str, Any]] = None
|
||||
"""
|
||||
Additional keyword arguments for the multi-modal processor.
|
||||
"""
|
||||
enable_mm: bool = False
|
||||
"""
|
||||
Flags to enable multi-modal model
|
||||
"""
|
||||
speculative_config: Optional[Dict[str, Any]] = None
|
||||
"""
|
||||
Configuration for speculative execution.
|
||||
"""
|
||||
dynamic_load_weight: int = 0
|
||||
"""
|
||||
dynamic load weight
|
||||
"""
|
||||
|
||||
# Inference configuration parameters
|
||||
gpu_memory_utilization: float = 0.9
|
||||
"""
|
||||
The fraction of GPU memory to be utilized.
|
||||
"""
|
||||
num_gpu_blocks_override: Optional[int] = None
|
||||
"""
|
||||
Override for the number of GPU blocks.
|
||||
"""
|
||||
max_num_batched_tokens: Optional[int] = None
|
||||
"""
|
||||
Maximum number of tokens to batch together.
|
||||
"""
|
||||
kv_cache_ratio: float = 0.75
|
||||
"""
|
||||
Ratio of tokens to process in a block.
|
||||
"""
|
||||
nnode: int = 1
|
||||
"""
|
||||
Number of nodes in the cluster.
|
||||
"""
|
||||
pod_ips: Optional[List[str]] = None
|
||||
"""
|
||||
List of IP addresses for nodes in the cluster.
|
||||
"""
|
||||
|
||||
# System configuration parameters
|
||||
use_warmup: int = 0
|
||||
"""
|
||||
Flag to indicate whether to use warm-up before inference.
|
||||
"""
|
||||
enable_prefix_caching: bool = False
|
||||
"""
|
||||
Flag to enable prefix caching.
|
||||
"""
|
||||
engine_worker_queue_port: int = 8002
|
||||
enable_chunked_prefill: bool = False
|
||||
"""
|
||||
Flag to enable chunked prefilling.
|
||||
"""
|
||||
|
||||
"""
|
||||
Scheduler name to be used
|
||||
"""
|
||||
scheduler_name: str = "local"
|
||||
"""
|
||||
Size of scheduler
|
||||
"""
|
||||
scheduler_max_size: int = -1
|
||||
"""
|
||||
TTL of request
|
||||
"""
|
||||
scheduler_ttl: int = 900
|
||||
"""
|
||||
Timeout for waiting for response
|
||||
"""
|
||||
scheduler_wait_response_timeout: float = 0.001
|
||||
"""
|
||||
Host of redis
|
||||
"""
|
||||
scheduler_host: str = "127.0.0.1"
|
||||
"""
|
||||
Port of redis
|
||||
"""
|
||||
scheduler_port: int = 6379
|
||||
"""
|
||||
DB of redis
|
||||
"""
|
||||
scheduler_db: int = 0
|
||||
"""
|
||||
Password of redis
|
||||
"""
|
||||
scheduler_password: Optional[str] = None
|
||||
"""
|
||||
Topic of scheduler
|
||||
"""
|
||||
scheduler_topic: str = "default"
|
||||
"""
|
||||
Max write time of redis
|
||||
"""
|
||||
scheduler_remote_write_time: int = 3
|
||||
|
||||
def __post_init__(self):
|
||||
"""
|
||||
Post-initialization processing to set default tokenizer if not provided.
|
||||
"""
|
||||
if not self.tokenizer:
|
||||
self.tokenizer = self.model
|
||||
|
||||
@staticmethod
|
||||
def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
|
||||
"""
|
||||
Add command line interface arguments to the parser.
|
||||
"""
|
||||
# Model parameters group
|
||||
model_group = parser.add_argument_group("Model Configuration")
|
||||
model_group.add_argument("--model",
|
||||
type=str,
|
||||
default=EngineArgs.model,
|
||||
help="Model name or path to be used.")
|
||||
model_group.add_argument("--model-config-name",
|
||||
type=nullable_str,
|
||||
default=EngineArgs.model_config_name,
|
||||
help="The model configuration file name.")
|
||||
model_group.add_argument(
|
||||
"--tokenizer",
|
||||
type=nullable_str,
|
||||
default=EngineArgs.tokenizer,
|
||||
help=
|
||||
"Tokenizer name or path (defaults to model path if not specified)."
|
||||
)
|
||||
model_group.add_argument(
|
||||
"--max-model-len",
|
||||
type=int,
|
||||
default=EngineArgs.max_model_len,
|
||||
help="Maximum context length supported by the model.")
|
||||
model_group.add_argument(
|
||||
"--block-size",
|
||||
type=int,
|
||||
default=EngineArgs.block_size,
|
||||
help="Number of tokens processed in one block.")
|
||||
model_group.add_argument("--task",
|
||||
type=str,
|
||||
default=EngineArgs.task,
|
||||
help="Task to be executed by the model.")
|
||||
model_group.add_argument(
|
||||
"--use-warmup",
|
||||
type=int,
|
||||
default=EngineArgs.use_warmup,
|
||||
help="Flag to indicate whether to use warm-up before inference.")
|
||||
model_group.add_argument(
|
||||
"--mm_processor_kwargs",
|
||||
default=None,
|
||||
help="Additional keyword arguments for the multi-modal processor.")
|
||||
model_group.add_argument("--enable-mm",
|
||||
action='store_true',
|
||||
default=EngineArgs.enable_mm,
|
||||
help="Flag to enable multi-modal model.")
|
||||
model_group.add_argument(
|
||||
"--speculative_config",
|
||||
default=None,
|
||||
help="Configuration for speculative execution.")
|
||||
|
||||
model_group.add_argument(
|
||||
"--dynamic_load_weight",
|
||||
type=int,
|
||||
default=EngineArgs.dynamic_load_weight,
|
||||
help="Flag to indicate whether to load weight dynamically.")
|
||||
|
||||
model_group.add_argument("--engine-worker-queue-port",
|
||||
type=int,
|
||||
default=EngineArgs.engine_worker_queue_port,
|
||||
help="port for engine worker queue")
|
||||
|
||||
# Parallel processing parameters group
|
||||
parallel_group = parser.add_argument_group("Parallel Configuration")
|
||||
parallel_group.add_argument("--tensor-parallel-size",
|
||||
"-tp",
|
||||
type=int,
|
||||
default=EngineArgs.tensor_parallel_size,
|
||||
help="Degree of tensor parallelism.")
|
||||
parallel_group.add_argument(
|
||||
"--max-num-seqs",
|
||||
type=int,
|
||||
default=EngineArgs.max_num_seqs,
|
||||
help="Maximum number of sequences per iteration.")
|
||||
parallel_group.add_argument(
|
||||
"--num-gpu-blocks-override",
|
||||
type=int,
|
||||
default=EngineArgs.num_gpu_blocks_override,
|
||||
help="Override for the number of GPU blocks.")
|
||||
parallel_group.add_argument(
|
||||
"--max-num-batched-tokens",
|
||||
type=int,
|
||||
default=EngineArgs.max_num_batched_tokens,
|
||||
help="Maximum number of tokens to batch together.")
|
||||
parallel_group.add_argument(
|
||||
"--gpu-memory-utilization",
|
||||
type=float,
|
||||
default=EngineArgs.gpu_memory_utilization,
|
||||
help="Fraction of GPU memory to be utilized.")
|
||||
parallel_group.add_argument(
|
||||
"--kv-cache-ratio",
|
||||
type=float,
|
||||
default=EngineArgs.kv_cache_ratio,
|
||||
help="Ratio of tokens to process in a block.")
|
||||
|
||||
# Cluster system parameters group
|
||||
system_group = parser.add_argument_group("System Configuration")
|
||||
system_group.add_argument(
|
||||
"--pod-ips",
|
||||
type=lambda s: s.split(",") if s else None,
|
||||
default=EngineArgs.pod_ips,
|
||||
help=
|
||||
"List of IP addresses for nodes in the cluster (comma-separated).")
|
||||
system_group.add_argument("--nnode",
|
||||
type=int,
|
||||
default=EngineArgs.nnode,
|
||||
help="Number of nodes in the cluster.")
|
||||
|
||||
# Performance tuning parameters group
|
||||
perf_group = parser.add_argument_group("Performance Tuning")
|
||||
perf_group.add_argument(
|
||||
"--enable-prefix-caching",
|
||||
action='store_true',
|
||||
default=EngineArgs.enable_prefix_caching,
|
||||
help="Flag to enable prefix caching."
|
||||
)
|
||||
perf_group.add_argument(
|
||||
"--enable-chunked-prefill",
|
||||
action='store_true',
|
||||
default=EngineArgs.enable_chunked_prefill,
|
||||
help="Flag to enable chunked prefill."
|
||||
)
|
||||
|
||||
# Scheduler parameters group
|
||||
scheduler_group = parser.add_argument_group("Scheduler")
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-name",
|
||||
default=EngineArgs.scheduler_name,
|
||||
help=
|
||||
f"Scheduler name to be used. Default is {EngineArgs.scheduler_name}. (local,global)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-max-size",
|
||||
type=int,
|
||||
default=EngineArgs.scheduler_max_size,
|
||||
help=
|
||||
f"Size of scheduler. Default is {EngineArgs.scheduler_max_size}. (Local)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-ttl",
|
||||
type=int,
|
||||
default=EngineArgs.scheduler_ttl,
|
||||
help=
|
||||
f"TTL of request. Default is {EngineArgs.scheduler_ttl} seconds. (local,global)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-wait-response-timeout",
|
||||
type=float,
|
||||
default=EngineArgs.scheduler_wait_response_timeout,
|
||||
help=
|
||||
("Timeout for waiting for response. Default is "
|
||||
f"{EngineArgs.scheduler_wait_response_timeout} seconds. (local,global)"
|
||||
))
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-host",
|
||||
default=EngineArgs.scheduler_host,
|
||||
help=
|
||||
f"Host address of redis. Default is {EngineArgs.scheduler_host}. (global)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-port",
|
||||
type=int,
|
||||
default=EngineArgs.scheduler_port,
|
||||
help=
|
||||
f"Port of redis. Default is {EngineArgs.scheduler_port}. (global)")
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-db",
|
||||
type=int,
|
||||
default=EngineArgs.scheduler_db,
|
||||
help=f"DB of redis. Default is {EngineArgs.scheduler_db}. (global)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-password",
|
||||
default=EngineArgs.scheduler_password,
|
||||
help=
|
||||
f"Password of redis. Default is {EngineArgs.scheduler_password}. (global)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-topic",
|
||||
default=EngineArgs.scheduler_topic,
|
||||
help=
|
||||
f"Topic of scheduler. Defaule is {EngineArgs.scheduler_topic}. (global)"
|
||||
)
|
||||
scheduler_group.add_argument(
|
||||
"--scheduler-remote-write-time",
|
||||
type=int,
|
||||
default=EngineArgs.scheduler_remote_write_time,
|
||||
help=
|
||||
f"Max write time of redis. Default is {EngineArgs.scheduler_remote_write_time} seconds (global)"
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
@classmethod
|
||||
def from_cli_args(cls, args: FlexibleArgumentParser) -> "EngineArgs":
|
||||
"""
|
||||
Create an instance of EngineArgs from command line arguments.
|
||||
"""
|
||||
return cls(
|
||||
**{
|
||||
field.name: getattr(args, field.name)
|
||||
for field in dataclass_fields(cls)
|
||||
})
|
||||
|
||||
def create_model_config(self) -> ModelConfig:
|
||||
"""
|
||||
Create and return a ModelConfig object based on the current settings.
|
||||
"""
|
||||
return ModelConfig(model_name_or_path=self.model,
|
||||
config_json_file=self.model_config_name,
|
||||
dynamic_load_weight=self.dynamic_load_weight)
|
||||
|
||||
def create_cache_config(self) -> CacheConfig:
|
||||
"""
|
||||
Create and return a CacheConfig object based on the current settings.
|
||||
"""
|
||||
return CacheConfig(
|
||||
block_size=self.block_size,
|
||||
gpu_memory_utilization=self.gpu_memory_utilization,
|
||||
num_gpu_blocks_override=self.num_gpu_blocks_override,
|
||||
kv_cache_ratio=self.kv_cache_ratio,
|
||||
enable_prefix_caching=self.enable_prefix_caching)
|
||||
|
||||
def create_scheduler_config(self) -> SchedulerConfig:
|
||||
"""
|
||||
Create and retuan a SchedulerConfig object based on the current settings.
|
||||
"""
|
||||
prefix = "scheduler_"
|
||||
prefix_len = len(prefix)
|
||||
|
||||
all = asdict(self)
|
||||
params = dict()
|
||||
for k, v in all.items():
|
||||
if k[:prefix_len] == prefix:
|
||||
params[k[prefix_len:]] = v
|
||||
return SchedulerConfig(**params)
|
||||
|
||||
def create_engine_config(self) -> Config:
|
||||
"""
|
||||
Create and return a Config object based on the current settings.
|
||||
"""
|
||||
model_cfg = self.create_model_config()
|
||||
if not model_cfg.is_unified_ckpt and hasattr(model_cfg,
|
||||
'tensor_parallel_size'):
|
||||
self.tensor_parallel_size = model_cfg.tensor_parallel_size
|
||||
if self.max_num_batched_tokens is None:
|
||||
if self.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
else:
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
scheduler_cfg = self.create_scheduler_config()
|
||||
return Config(
|
||||
model_name_or_path=self.model,
|
||||
model_config=model_cfg,
|
||||
scheduler_config=scheduler_cfg,
|
||||
tokenizer=self.tokenizer,
|
||||
cache_config=self.create_cache_config(),
|
||||
max_model_len=self.max_model_len,
|
||||
tensor_parallel_size=self.tensor_parallel_size,
|
||||
max_num_seqs=self.max_num_seqs,
|
||||
mm_processor_kwargs=self.mm_processor_kwargs,
|
||||
speculative_config=self.speculative_config,
|
||||
max_num_batched_tokens=self.max_num_batched_tokens,
|
||||
nnode=self.nnode,
|
||||
pod_ips=self.pod_ips,
|
||||
use_warmup=self.use_warmup,
|
||||
engine_worker_queue_port=self.engine_worker_queue_port,
|
||||
enable_mm=self.enable_mm,
|
||||
enable_chunked_prefill=self.enable_chunked_prefill,
|
||||
)
|
Reference in New Issue
Block a user