[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,389 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "helper.h"
#include "speculate_msg.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
__device__ __forceinline__ bool in_need_block_list_schedule(const int &qid,
int *need_block_list,
const int &need_block_len) {
bool res = false;
for (int i = 0; i < need_block_len; i++) {
if (qid == need_block_list[i]) {
res = true;
need_block_list[i] = -1;
break;
}
}
return res;
}
__global__ void speculate_free_and_reschedule(bool *stop_flags,
int *seq_lens_this_time,
int *seq_lens_decoder,
int *block_tables,
int *encoder_block_lens,
bool *is_block_step,
int *step_block_list, // [bsz]
int *step_len,
int *recover_block_list,
int *recover_len,
int *need_block_list,
int *need_block_len,
int *used_list_len,
int *free_list,
int *free_list_len,
int64_t *first_token_ids,
int* accept_num,
const int bsz,
const int block_size,
const int block_num_per_seq,
const int max_decoder_block_num,
const int max_draft_tokens) {
typedef cub::BlockReduce<cub::KeyValuePair<int, int>, 256> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
__shared__ bool step_max_block_flag;
__shared__ int in_need_block_list_len;
const int tid = threadIdx.x;
if (tid < bsz) {
if (tid == 0) {
step_max_block_flag = false;
in_need_block_list_len = 0;
}
int *block_table_now = block_tables + tid * block_num_per_seq;
int max_possible_block_idx = (seq_lens_decoder[tid] + max_draft_tokens + 1 ) / block_size;
if (stop_flags[tid]) {
// 回收block块
first_token_ids[tid] = -1;
const int encoder_block_len = encoder_block_lens[tid];
const int decoder_used_len = used_list_len[tid];
if (decoder_used_len > 0) {
const int ori_free_list_len =
atomicAdd(free_list_len, decoder_used_len);
#ifdef DEBUG_STEP
printf(
"free block seq_id: %d, free block num: %d, "
"encoder_block_len: %d, ori_free_list_len: %d\n",
tid,
decoder_used_len,
encoder_block_len,
ori_free_list_len);
#endif
for (int i = 0; i < decoder_used_len; i++) {
free_list[ori_free_list_len + i] =
block_table_now[encoder_block_len + i];
block_table_now[encoder_block_len + i] = -1;
}
encoder_block_lens[tid] = 0;
used_list_len[tid] = 0;
}
} else if (seq_lens_this_time[tid] != 0 && max_possible_block_idx < block_num_per_seq &&
block_table_now[(seq_lens_decoder[tid] + max_draft_tokens +
1) /
block_size] == -1) {
// 统计需要分配block的位置和总数
#ifdef DEBUG_STEP
printf("step seq_id:%d, ##### pin 1 #####\n", tid);
#endif
const int ori_need_block_len = atomicAdd(need_block_len, 1);
need_block_list[ori_need_block_len] = tid;
#ifdef DEBUG_STEP
printf("seq_id: %d need block\n", tid);
#endif
}
}
#ifdef DEBUG_STEP
printf("step seq_id:%d, ##### pin 2 #####\n", tid);
#endif
__syncthreads();
// 调度block直到满足need_block_len
while (need_block_len[0] > free_list_len[0]) {
if (tid == 0) {
printf("need_block_len: %d, free_list_len: %d\n",
need_block_len[0],
free_list_len[0]);
}
// 调度block根据used_list_len从大到小回收block直到满足need_block_len已解码到最后一个block的query不参与调度马上就结束
const int used_block_num =
tid < bsz ? used_list_len[tid] : 0;
cub::KeyValuePair<int, int> kv_pair = {tid, used_block_num};
kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, cub::ArgMax());
if (tid == 0) {
if (kv_pair.value == 0) {
step_max_block_flag = true;
} else {
const int encoder_block_len = encoder_block_lens[kv_pair.key];
printf("step max_id: %d, max_num: %d, encoder_block_len: %d\n",
kv_pair.key,
kv_pair.value,
encoder_block_len);
int *block_table_now =
block_tables + kv_pair.key * block_num_per_seq;
// 回收调度位的block
for (int i = 0; i < kv_pair.value; i++) {
free_list[free_list_len[0] + i] =
block_table_now[encoder_block_len + i];
block_table_now[encoder_block_len + i] = -1;
}
step_block_list[step_len[0]] = kv_pair.key;
// 如果调度位置本次也需要block对应的处理
if (in_need_block_list_schedule(
kv_pair.key,
need_block_list,
need_block_len[0] + in_need_block_list_len)) {
need_block_len[0] -= 1;
in_need_block_list_len += 1;
}
step_len[0] += 1;
free_list_len[0] += kv_pair.value;
stop_flags[kv_pair.key] = true;
seq_lens_this_time[kv_pair.key] = 0;
seq_lens_decoder[kv_pair.key] = 0;
encoder_block_lens[kv_pair.key] = 0;
used_list_len[kv_pair.key] = 0;
printf(
"free block seq_id: %d, free block num: %d, "
"now_free_list_len: %d\n",
(int)kv_pair.key,
(int)kv_pair.value,
(int)free_list_len[0]);
}
}
__syncthreads();
}
#ifdef DEBUG_STEP
printf("step seq_id:%d, ##### pin 3 #####\n", tid);
#endif
// 为需要block的位置分配block每个位置分配一个block
if (tid < need_block_len[0] + in_need_block_list_len) {
const int need_block_id = need_block_list[tid];
if (need_block_id != -1) {
if (!stop_flags[need_block_id]) {
// 如果需要的位置正好是上一步中被释放的位置,不做处理
used_list_len[need_block_id] += 1;
const int ori_free_list_len = atomicSub(free_list_len, 1);
int *block_table_now =
block_tables + need_block_id * block_num_per_seq;
block_table_now[(seq_lens_decoder[need_block_id] +
max_draft_tokens + 1) /
block_size] = free_list[ori_free_list_len - 1];
}
need_block_list[tid] = -1;
}
}
__syncthreads();
// reset need_block_len
if (tid == 0) {
need_block_len[0] = 0;
}
}
// 为不修改接口调用方式,入参暂不改变
void SpeculateStepSchedule(const paddle::Tensor &stop_flags,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &ori_seq_lens_encoder,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &block_tables, // [bsz, block_num_per_seq]
const paddle::Tensor &encoder_block_lens,
const paddle::Tensor &is_block_step,
const paddle::Tensor &step_block_list,
const paddle::Tensor &step_lens,
const paddle::Tensor &recover_block_list,
const paddle::Tensor &recover_lens,
const paddle::Tensor &need_block_list,
const paddle::Tensor &need_block_len,
const paddle::Tensor &used_list_len,
const paddle::Tensor &free_list,
const paddle::Tensor &free_list_len,
const paddle::Tensor &input_ids,
const paddle::Tensor &pre_ids,
const paddle::Tensor &step_idx,
const paddle::Tensor &next_tokens,
const paddle::Tensor &first_token_ids,
const paddle::Tensor &accept_num,
const int block_size,
const int encoder_decoder_block_num,
const int max_draft_tokens) {
auto cu_stream = seq_lens_this_time.stream();
const int bsz = seq_lens_this_time.shape()[0];
const int block_num_per_seq = block_tables.shape()[1];
const int length = input_ids.shape()[1];
const int pre_id_length = pre_ids.shape()[1];
constexpr int BlockSize = 256; // bsz <= 256
const int max_decoder_block_num = length / block_size - encoder_decoder_block_num; // 最大输出长度对应的block - 服务为解码分配的block数量
auto step_lens_inkernel = paddle::full({1}, 0, paddle::DataType::INT32, stop_flags.place());
auto step_bs_list = GetEmptyTensor({bsz}, paddle::DataType::INT32, stop_flags.place());
#ifdef DEBUG_STEP
printf(
"bsz: %d, block_num_per_seq: %d, length: %d, max_decoder_block_num: "
"%d\n",
bsz,
block_num_per_seq,
length,
max_decoder_block_num);
#endif
speculate_free_and_reschedule<<<1, BlockSize, 0, cu_stream>>>(
const_cast<bool *>(stop_flags.data<bool>()),
const_cast<int *>(seq_lens_this_time.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<int *>(block_tables.data<int>()),
const_cast<int *>(encoder_block_lens.data<int>()),
const_cast<bool *>(is_block_step.data<bool>()),
const_cast<int *>(step_bs_list.data<int>()),
const_cast<int *>(step_lens_inkernel.data<int>()),
const_cast<int *>(recover_block_list.data<int>()),
const_cast<int *>(recover_lens.data<int>()),
const_cast<int *>(need_block_list.data<int>()),
const_cast<int *>(need_block_len.data<int>()),
const_cast<int *>(used_list_len.data<int>()),
const_cast<int *>(free_list.data<int>()),
const_cast<int *>(free_list_len.data<int>()),
const_cast<int64_t *>(first_token_ids.data<int64_t>()),
const_cast<int *>(accept_num.data<int>()),
bsz,
block_size,
block_num_per_seq,
max_decoder_block_num,
max_draft_tokens);
#ifdef DEBUG_STEP
cudaDeviceSynchronize();
#endif
// save output
auto step_lens_cpu = step_lens_inkernel.copy_to(paddle::CPUPlace(), false);
if (step_lens_cpu.data<int>()[0] > 0) {
auto step_bs_list_cpu = step_bs_list.copy_to(paddle::CPUPlace(), false);
auto next_tokens = paddle::full({bsz}, -1, paddle::DataType::INT64, paddle::CPUPlace());
for (int i = 0; i < step_lens_cpu.data<int>()[0]; i++) {
const int step_bid = step_bs_list_cpu.data<int>()[i];
next_tokens.data<int64_t>()[step_bid] = -3; // need reschedule
}
const int rank_id = static_cast<int>(stop_flags.place().GetDeviceId());
printf("reschedule rank_id: %d, step_lens: %d", rank_id, step_lens_cpu.data<int>()[0]);
const int64_t* x_data = next_tokens.data<int64_t>();
static struct speculate_msgdata msg_sed;
int msg_queue_id = rank_id;
if (const char* inference_msg_queue_id_env_p =
std::getenv("INFERENCE_MSG_QUEUE_ID")) {
std::string inference_msg_queue_id_env_str(
inference_msg_queue_id_env_p);
int inference_msg_queue_id_from_env =
std::stoi(inference_msg_queue_id_env_str);
msg_queue_id = inference_msg_queue_id_from_env;
} else {
std::cout << "Failed to got INFERENCE_MSG_QUEUE_ID at env, use default."
<< std::endl;
}
int inference_msg_id_from_env = 1;
if (const char* inference_msg_id_env_p = std::getenv("INFERENCE_MSG_ID")) {
std::string inference_msg_id_env_str(inference_msg_id_env_p);
inference_msg_id_from_env = std::stoi(inference_msg_id_env_str);
if (inference_msg_id_from_env == 2) {
// 2 and -2 is perserve for no-output indication.
throw std::runtime_error(
" INFERENCE_MSG_ID cannot be 2, please use other number.");
}
if (inference_msg_id_from_env < 0) {
throw std::runtime_error(
" INFERENCE_MSG_ID cannot be negative, please use other "
"number.");
}
} else {
}
// static key_t key = ftok("/dev/shm", msg_queue_id);
static key_t key = ftok("./", msg_queue_id);
static int msgid = msgget(key, IPC_CREAT | 0666);
msg_sed.mtype = 1;
msg_sed.mtext[0] = inference_msg_id_from_env;
msg_sed.mtext[1] = bsz;
for (int i = 2; i < bsz + 2; i++) {
msg_sed.mtext[i] = (int)x_data[i - 2];
}
if ((msgsnd(msgid, &msg_sed, (MAX_BSZ + 2) * 4, 0)) == -1) {
printf("full msg buffer\n");
}
}
}
PD_BUILD_STATIC_OP(speculate_step_reschedule)
.Inputs({"stop_flags",
"seq_lens_this_time",
"ori_seq_lens_encoder",
"seq_lens_encoder",
"seq_lens_decoder",
"block_tables",
"encoder_block_lens",
"is_block_step",
"step_block_list",
"step_lens",
"recover_block_list",
"recover_lens",
"need_block_list",
"need_block_len",
"used_list_len",
"free_list",
"free_list_len",
"input_ids",
"pre_ids",
"step_idx",
"next_tokens",
"first_token_ids",
"accept_num"})
.Attrs({"block_size: int",
"encoder_decoder_block_num: int",
"max_draft_tokens: int"})
.Outputs({"stop_flags_out",
"seq_lens_this_time_out",
"seq_lens_encoder_out",
"seq_lens_decoder_out",
"block_tables_out",
"encoder_block_lens_out",
"is_block_step_out",
"step_block_list_out",
"step_lens_out",
"recover_block_list_out",
"recover_lens_out",
"need_block_list_out",
"need_block_len_out",
"used_list_len_out",
"free_list_out",
"free_list_len_out",
"input_ids_out",
"first_token_ids_out"})
.SetInplaceMap({{"stop_flags", "stop_flags_out"},
{"seq_lens_this_time", "seq_lens_this_time_out"},
{"seq_lens_encoder", "seq_lens_encoder_out"},
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"block_tables", "block_tables_out"},
{"encoder_block_lens", "encoder_block_lens_out"},
{"is_block_step", "is_block_step_out"},
{"step_block_list", "step_block_list_out"},
{"step_lens", "step_lens_out"},
{"recover_block_list", "recover_block_list_out"},
{"recover_lens", "recover_lens_out"},
{"need_block_list", "need_block_list_out"},
{"need_block_len", "need_block_len_out"},
{"used_list_len", "used_list_len_out"},
{"free_list", "free_list_out"},
{"free_list_len", "free_list_len_out"},
{"input_ids", "input_ids_out"},
{"first_token_ids", "first_token_ids_out"}})
.SetKernelFn(PD_KERNEL(SpeculateStepSchedule));