[LLM] First commit the llm deployment code

This commit is contained in:
jiangjiajun
2025-06-09 19:20:15 +08:00
parent 980c0a1d2c
commit 684703fd72
11814 changed files with 127294 additions and 1293102 deletions

View File

@@ -0,0 +1,526 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/extension.h"
namespace py = pybind11;
// 自定义异常类用于处理CUDA错误
class CudaError : public std::exception {
public:
explicit CudaError(cudaError_t error) : error_(error) {}
const char *what() const noexcept override {
return cudaGetErrorString(error_);
}
private:
cudaError_t error_;
};
// 检查CUDA错误并抛出异常
void check_cuda_error(cudaError_t error) {
if (error != cudaSuccess) {
throw CudaError(error);
}
}
// 封装cudaHostAlloc的Python函数
uintptr_t cuda_host_alloc(size_t size,
unsigned int flags = cudaHostAllocDefault) {
void *ptr = nullptr;
check_cuda_error(cudaHostAlloc(&ptr, size, flags));
return reinterpret_cast<uintptr_t>(ptr);
}
// 封装cudaFreeHost的Python函数
void cuda_host_free(uintptr_t ptr) {
check_cuda_error(cudaFreeHost(reinterpret_cast<void *>(ptr)));
}
std::vector<paddle::Tensor> AppendAttention(
const paddle::Tensor &qkv, const paddle::Tensor &key_cache,
const paddle::Tensor &value_cache, const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &padding_offsets, const paddle::Tensor &cum_offsets,
const paddle::Tensor &block_tables, const paddle::Tensor &encoder_batch_ids,
const paddle::Tensor &encoder_tile_ids_per_batch,
const paddle::Tensor &encoder_num_blocks,
const paddle::Tensor &kv_batch_ids,
const paddle::Tensor &kv_tile_ids_per_batch,
const paddle::Tensor &kv_num_blocks,
const paddle::Tensor &decoder_batch_ids,
const paddle::Tensor &decoder_tile_ids_per_batch,
const paddle::Tensor &decoder_num_blocks,
const paddle::Tensor &set_max_lengths, const paddle::Tensor &max_len_kv,
const paddle::optional<paddle::Tensor> &rotary_embs,
const paddle::optional<paddle::Tensor> &attn_mask,
const paddle::optional<paddle::Tensor> &qkv_bias,
const paddle::optional<paddle::Tensor> &qkv_out_scales,
const paddle::optional<paddle::Tensor> &cache_k_quant_scales,
const paddle::optional<paddle::Tensor> &cache_v_quant_scales,
const paddle::optional<paddle::Tensor> &cache_k_dequant_scales,
const paddle::optional<paddle::Tensor> &cache_v_dequant_scales,
const paddle::optional<paddle::Tensor> &cache_k_zp,
const paddle::optional<paddle::Tensor> &cache_v_zp,
const paddle::optional<paddle::Tensor> &out_linear_shifts,
const paddle::optional<paddle::Tensor> &out_linear_smooths,
const paddle::optional<paddle::Tensor> &kv_signal_data,
const std::string &compute_dtype, const std::string &cache_quant_type_str,
const bool use_neox_rotary_style, const bool rope_3d,
const int max_input_length, const float quant_max_bound,
const float quant_min_bound, const float out_linear_in_scale,
const int encoder_block_shape_q, const int decoder_block_shape_q,
const int max_partition_size, const int encoder_max_partition_size,
const int speculate_max_draft_token_num, const bool causal,
const bool speculate_decoder);
std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
const paddle::Tensor &qkv, const paddle::Tensor &key_cache,
const paddle::Tensor &value_cache, const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &cu_seqlens_k, const paddle::Tensor &rotary_embs,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &padding_offsets, const paddle::Tensor &cum_offsets,
const paddle::Tensor &block_tables, const paddle::Tensor &kv_batch_ids,
const paddle::Tensor &kv_tile_ids, const paddle::Tensor &kv_num_blocks,
const paddle::Tensor &cache_batch_ids, const paddle::Tensor &cache_tile_ids,
const paddle::Tensor &cache_num_blocks,
const paddle::optional<paddle::Tensor> &cache_k_quant_scales,
const paddle::optional<paddle::Tensor> &cache_v_quant_scales,
const paddle::optional<paddle::Tensor> &cache_k_dequant_scales,
const paddle::optional<paddle::Tensor> &cache_v_dequant_scales,
const paddle::optional<paddle::Tensor> &cache_k_zp,
const paddle::optional<paddle::Tensor> &cache_v_zp,
const paddle::optional<paddle::Tensor> &kv_signal_data,
const int kv_token_num, const int max_seq_len,
const std::string &cache_quant_type);
std::vector<paddle::Tensor>
PreCacheLenConcat(const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_this_time,
const int max_dec_len, const int block_size);
paddle::Tensor FusedExpertMoeFunc(
const paddle::Tensor &input, const paddle::Tensor &gate_weight,
const paddle::Tensor &ffn1_weight, const paddle::Tensor &ffn2_weight,
const paddle::optional<paddle::Tensor> &ffn1_bias,
const paddle::optional<paddle::Tensor> &ffn1_scale,
const paddle::optional<paddle::Tensor> &ffn2_bias,
const paddle::optional<paddle::Tensor> &ffn2_scale,
const std::string &quant_method, const int moe_topk,
const bool norm_topk_prob, const bool group_moe);
std::vector<paddle::Tensor> MoeExpertDispatch(
const paddle::Tensor& input,
const paddle::Tensor& gating_output,
const paddle::optional<paddle::Tensor>& gating_correction_bias,
const paddle::optional<paddle::Tensor> &w4a8_in_scale,
const int moe_topk,
const bool group_moe,
const bool topk_only_mode);
std::vector<paddle::Tensor>
MoETopKSelectKernel(const paddle::Tensor &gating_logits,
const paddle::optional<paddle::Tensor> &bias,
const int moe_topk, const bool apply_norm_weight,
const bool enable_softmax_top_k_fused);
std::vector<paddle::Tensor> MoERedundantTopKSelectKernel(
const paddle::Tensor& gating_logits,
const paddle::Tensor& expert_id_to_ep_rank_array,
const paddle::Tensor& expert_in_rank_num_list,
paddle::Tensor& tokens_per_expert_stats_list,
const paddle::optional<paddle::Tensor>& bias,
const int moe_topk,
const bool apply_norm_weight,
const bool enable_softmax_top_k_fused,
const int redundant_ep_rank_num_plus_one);
std::vector<paddle::Tensor>
EPMoeExpertDispatch(const paddle::Tensor &input, const paddle::Tensor &topk_ids,
const paddle::Tensor &topk_weights,
const paddle::optional<paddle::Tensor> &ffn1_in_scale,
const std::vector<int> &token_nums_per_expert,
const int token_nums_this_rank,
const std::string &moe_quant_type);
std::vector<paddle::Tensor> EPMoeExpertDispatchFP8(
const paddle::Tensor &input, const paddle::Tensor &scale,
const paddle::Tensor &topk_ids, const paddle::Tensor &topk_weights,
const std::vector<int> &token_nums_per_expert,
const std::vector<int> &token_nums_per_expert_padded,
const int token_nums_this_rank, const int token_nums_this_rank_padded);
std::vector<paddle::Tensor> PerTokenQuant(paddle::Tensor &input,
const int block_size);
std::vector<paddle::Tensor> PerTokenQuantPadding(paddle::Tensor &input,
const int block_size);
std::vector<paddle::Tensor>
MaskedPerTokenQuant(paddle::Tensor &input, paddle::Tensor &recv_expert_count,
const int block_size);
std::vector<paddle::Tensor> EPMoeExpertCombine(
const paddle::Tensor &ffn_out, const paddle::Tensor &expert_scales_float,
const paddle::Tensor &permute_indices_per_token,
const paddle::Tensor &top_k_indices,
const paddle::optional<paddle::Tensor> &ffn2_bias,
const bool norm_topk_prob, const float routed_scaling_factor);
std::vector<std::vector<int>> GetExpertTokenNum(
const paddle::Tensor& topk_ids,
const int num_experts);
paddle::Tensor MoeExpertFFNFunc(
const paddle::Tensor &permute_input,
const paddle::Tensor &tokens_expert_prefix_sum,
const paddle::Tensor &ffn1_weight, const paddle::Tensor &ffn2_weight,
const paddle::optional<paddle::Tensor> &ffn1_bias,
const paddle::optional<paddle::Tensor> &ffn1_scale,
const paddle::optional<paddle::Tensor> &ffn2_scale,
const paddle::optional<paddle::Tensor> &ffn2_in_scale,
const paddle::optional<paddle::Tensor> &expert_idx_per_token,
const std::string &quant_method, const bool used_in_ep_low_latency);
paddle::Tensor MoeExpertReduceFunc(
const paddle::Tensor &ffn_out, const paddle::Tensor &top_k_weight,
const paddle::Tensor &permute_indices_per_token,
const paddle::Tensor &top_k_indices,
const paddle::optional<paddle::Tensor> &ffn2_bias,
const bool norm_topk_prob, const float routed_scaling_factor);
void InitKVSignalPerQuery(const paddle::Tensor &seq_lens_encoder_tensor,
const paddle::Tensor &seq_lens_this_time_tensor,
const paddle::Tensor &seq_lens_decoder_tensor,
const int rank,
const int num_layers);
void GetOutputKVSignal(const paddle::Tensor& x,
int64_t rank_id,
bool wait_flag);
paddle::Tensor DequantInt8Func(const paddle::Tensor &input,
const paddle::Tensor &out_scale,
std::string dtype);
paddle::Tensor OpenShmAndGetMetaSignalFunc(const int rank,
const bool keep_pd_step_flag);
paddle::Tensor InitSignalLayerwiseFunc(const paddle::Tensor &kv_signal_metadata,
const int layer_id);
std::vector<paddle::Tensor> GetBlockShapeAndSplitKVBlock(
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_this_time, const paddle::Tensor &cum_offsets,
const int encoder_block_shape_q, const int decoder_block_shape_q,
const int group_size, const int block_size,
const int decoder_step_token_num);
std::vector<paddle::Tensor> GetPaddingOffset(const paddle::Tensor &input_ids,
const paddle::Tensor &cum_offsets,
const paddle::Tensor &token_num,
const paddle::Tensor &seq_len);
void SetValueByFlagsAndIdx(const paddle::Tensor &pre_ids_all,
const paddle::Tensor &input_ids,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &step_idx,
const paddle::Tensor &stop_flags);
paddle::Tensor RebuildPaddingFunc(
const paddle::Tensor &tmp_out, // [token_num, dim_embed]
const paddle::Tensor &cum_offsets, // [bsz, 1]
const paddle::Tensor &seq_len_this_time,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_encoder,
const paddle::optional<paddle::Tensor> &output_padding_offset,
int max_input_length);
void GetStopFlagsMulti(const paddle::Tensor &topk_ids,
const paddle::Tensor &stop_flags,
const paddle::Tensor &seq_lens,
const paddle::Tensor &end_ids,
const paddle::Tensor &next_tokens,
const bool beam_search);
void GetStopFlagsMultiSeqs(
const paddle::Tensor &topk_ids, const paddle::Tensor &pre_ids,
const paddle::Tensor &step_idx, const paddle::Tensor &stop_flags,
const paddle::Tensor &seq_lens, const paddle::Tensor &stop_seqs,
const paddle::Tensor &stop_seqs_len, const paddle::Tensor &end_ids);
void UpdateInputes(const paddle::Tensor &stop_flags,
const paddle::Tensor &not_need_stop, // only on cpu
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &input_ids,
const paddle::Tensor &stop_nums,
const paddle::Tensor &next_tokens,
const paddle::Tensor &is_block_step);
paddle::Tensor
GroupSwigluWithMasked(const paddle::Tensor &fc1_out_tensor,
const paddle::Tensor &token_nums_per_expert);
std::vector<paddle::Tensor> ExtractTextTokenOutput(
const paddle::Tensor &max_seq_len, const paddle::Tensor &max_seq_len_index,
const paddle::Tensor &mm_token_num_len,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &cu_seqlens_q, const paddle::Tensor &score_text);
std::vector<paddle::Tensor> MoEDeepGEMMPermute(
const paddle::Tensor& x,
const paddle::Tensor& topk_idx,
const int num_experts,
const int max_tokens_per_expert
);
std::vector<paddle::Tensor> MoEDeepGEMMDePermute(
const paddle::Tensor& ffn_out, // [num_experts, max_tokens_per_expert, hidden]
const paddle::Tensor& permute_indices_per_token, // [token_num, topk}]
const paddle::Tensor& topk_idx,
const paddle::Tensor& topk_weights
);
PYBIND11_MODULE(fastdeploy_ops, m) {
m.def("get_expert_token_num", &GetExpertTokenNum,
py::arg("topk_ids"), py::arg("num_experts"),
"get expert token num");
/**
* moe/fused_moe/moe_redundant_topk_select.cu
* moe_redundant_topk_select
*/
m.def("f_moe_redundant_topk_select", &MoERedundantTopKSelectKernel,
py::arg("gating_logits"), py::arg("expert_id_to_ep_rank_array"),
py::arg("expert_in_rank_num_list"), py::arg("tokens_per_expert_stats_list"),
py::arg("bias"), py::arg("moe_topk"), py::arg("apply_norm_weight"),
py::arg("enable_softmax_top_k_fused"), py::arg("redundant_ep_rank_num_plus_one"),
"moe export RedundantTopKSelect function");
/**
* open_shm_and_get_meta_signal.cc
* InitKVSingnalPerQuery
*/
m.def("init_kv_signal_per_query", &InitKVSignalPerQuery,
py::arg("seq_lens_encoder_tensor"), py::arg("seq_lens_this_time_tensor"),
py::arg("seq_lens_decoder_tensor"), py::arg("rank"), py::arg("num_layers"),
"init_kv_signal_per_query function");
/**
* GetOutputKVSignal
*/
m.def("get_output_kv_signal", &GetOutputKVSignal,
py::arg("x"), py::arg("rank_id"), py::arg("wait_flag"),
"get_output_kv_signal function");
m.def("moe_deepgemm_permute", &MoEDeepGEMMPermute, "MoEDeepGEMMPermute");
m.def("moe_deepgemm_depermute", &MoEDeepGEMMDePermute, "MoEDeepGEMMDePermute");
/**
* alloc_cache_pinned.cc
* cuda_host_alloc
* cuda_host_free
*/
m.def("cuda_host_alloc", &cuda_host_alloc, "Allocate pinned memory",
py::arg("size"), py::arg("flags") = cudaHostAllocDefault);
m.def("cuda_host_free", &cuda_host_free, "Free pinned memory",
py::arg("ptr"));
py::register_exception<CudaError>(m, "CudaError");
/**
* append_attention.cu
* append_attention
*/
m.def("append_attention", &AppendAttention, "append attention function");
/**
* gqa_rope_write_cache.cu
* gqa_rope_write_cache
*/
m.def("gqa_rope_write_cache", &GQARopeWriteCacheKernel,
"gqa rope write cache function");
/**
* pre_cache_len_concat.cu
* pre_cache_len_concat
*/
m.def("pre_cache_len_concat", &PreCacheLenConcat,
"pre_cache len concat function");
/**
* moe/fused_moe/fused_moe.cu
* fused_moe
*/
m.def("fused_moe", &FusedExpertMoeFunc, "fused moe function");
/**
* moe/fused_moe/fused_moe.cu
* fused_expert_moe
*/
m.def("fused_expert_moe", &FusedExpertMoeFunc, "fused moe function");
/**
* moe/fused_moe/moe_dispatch.cu
* moe_expert_dispatch
*/
m.def("moe_expert_dispatch", &MoeExpertDispatch, py::arg("input"),
py::arg("gating_output"), py::arg("gating_correction_bias"),
py::arg("w4a8_in_scale"), py::arg("moe_topk"), py::arg("group_moe"),
py::arg("topk_only_mode"), "moe export dispatch function");
/**
* moe/fused_moe/ep_moe_prefill_func.cu
* ep_moe_dispatch
*/
m.def("ep_moe_expert_dispatch", &EPMoeExpertDispatch, py::arg("input"),
py::arg("topk_ids"), py::arg("topk_weights"), py::arg("ffn1_in_scale"),
py::arg("token_nums_per_expert"), py::arg("token_nums_this_rank"),
py::arg("moe_quant_type"), "ep moe export dispatch function");
m.def("ep_moe_expert_dispatch_fp8", &EPMoeExpertDispatchFP8, py::arg("input"),
py::arg("scale"), py::arg("topk_ids"), py::arg("topk_weights"),
py::arg("token_nums_per_expert"),
py::arg("token_nums_per_expert_padded"),
py::arg("token_nums_this_rank"), py::arg("token_nums_this_rank_padded"),
"ep moe export dispatch function");
m.def("ep_moe_expert_combine", &EPMoeExpertCombine, py::arg("ffn_out"),
py::arg("expert_scales_float"), py::arg("permute_indices_per_token"),
py::arg("top_k_indices"), py::arg("ffn2_bias"),
py::arg("norm_topk_prob"), py::arg("routed_scaling_factor"),
"ep moe export combine function");
m.def("per_token_quant", &PerTokenQuant, py::arg("input"),
py::arg("block_size"), "per token per block quant");
m.def("per_token_quant_padding", &PerTokenQuantPadding, py::arg("input"),
py::arg("block_size"),
"per token per block quant and padding tranpose scale");
m.def("masked_per_token_quant", &MaskedPerTokenQuant, py::arg("input"),
py::arg("recv_expert_count"), py::arg("block_size"),
"per token per block quant");
/**
* moe/fused_moe/moe_topk_select.cu
* moe_topk_select
*/
m.def("moe_topk_select", &MoETopKSelectKernel, py::arg("gating_logits"),
py::arg("bias"), py::arg("moe_topk"), py::arg("apply_norm_weight"),
py::arg("enable_softmax_top_k_fused"),
"moe export TopKSelect function");
/**
* moe/fused_moe/moe_ffn.cu
* moe_expert_ffn
*/
m.def("moe_expert_ffn", &MoeExpertFFNFunc, "moe export ffn function");
/**
* moe/fused_moe/moe_expert_reduce.cu
* moe_expert_reduce
*/
m.def("moe_expert_reduce", &MoeExpertReduceFunc, py::arg("ffn_out"),
py::arg("top_k_weight"), py::arg("permute_indices_per_token"),
py::arg("top_k_indices"), py::arg("ffn2_bias"),
py::arg("norm_topk_prob"), py::arg("routed_scaling_factor"),
"moe export reduce function");
/**
* dequant_int8.cu
* dequant_int8
*/
m.def("dequant_int8", &DequantInt8Func, "dequant int8 function");
/**
* init_signal_layerwise.cc
* init_signal_layerwise
*/
m.def("init_signal_layerwise", &InitSignalLayerwiseFunc,
"init_signal_layerwise function");
/**
* open_shm_and_get_meta_signal.cc
* open_shm_and_get_meta_signal
*/
m.def("open_shm_and_get_meta_signal", &OpenShmAndGetMetaSignalFunc,
"open_shm_and_get_meta_signal function");
/**
* append_attn/get_block_shape_and_split_kv_block.cu
* get_block_shape_and_split_kv_block
*/
// m.def("f_get_block_shape_and_split_kv_block",
// &GetBlockShapeAndSplitKVBlock, "get_block_shape_and_split_kv_block
// function");
/**
* get_padding_offset.cu
* get_padding_offset
*/
m.def("get_padding_offset", &GetPaddingOffset, "get_padding_offset function");
/**
* get_padding_offset.cu
* get_padding_offset
*/
m.def("set_value_by_flags_and_idx", &SetValueByFlagsAndIdx,
"SetValueByFlagsAndIdx");
/**
* get_padding_offset.cu
* get_padding_offset
*/
m.def("rebuild_padding", &RebuildPaddingFunc, "update_inputs function");
/**
* stop_generation_multi_ends.cu
* set_stop_value_multi_ends
*/
m.def("set_stop_value_multi_ends", &GetStopFlagsMulti,
"update_inputs function");
/**
* stop_generation_multi_stop_seqs.cu
* set_stop_value_multi_seqs
*/
m.def("set_stop_value_multi_seqs", &GetStopFlagsMultiSeqs,
"update_inputs function");
/**
* update_inputs.cu
* update_inputs
*/
m.def("update_inputs", &UpdateInputes, "update_inputs function");
/**
* extract_text_token_output.cu
* extract_text_token_output
*/
m.def("extract_text_token_output", &ExtractTextTokenOutput,
"extract_text_token_output function");
m.def("group_swiglu_with_masked", &GroupSwigluWithMasked,
"group_swiglu_with_masked function");
}