mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[Sync][Internal] sync some internal paddle3d codes (#2108)
This commit is contained in:
@@ -16,3 +16,4 @@ from __future__ import absolute_import
|
||||
from .paddle3d.smoke import *
|
||||
from .paddle3d.petr import *
|
||||
from .paddle3d.centerpoint import *
|
||||
from .paddle3d.caddn import *
|
||||
|
108
python/fastdeploy/vision/perception/paddle3d/caddn.py
Normal file
108
python/fastdeploy/vision/perception/paddle3d/caddn.py
Normal file
@@ -0,0 +1,108 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class CaddnPreprocessor:
|
||||
def __init__(self, config_file):
|
||||
"""Create a preprocessor for Caddn
|
||||
"""
|
||||
self._preprocessor = C.vision.perception.CaddnPreprocessor(config_file)
|
||||
|
||||
def run(self, input_ims, cam_data, lidar_data):
|
||||
"""Preprocess input images for Caddn
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims, cam_data, lidar_data)
|
||||
|
||||
|
||||
class CaddnPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for Caddn
|
||||
"""
|
||||
self._postprocessor = C.vision.perception.CaddnPostprocessor()
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for Caddn
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of PerceptionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
|
||||
class Caddn(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a Caddn model exported by Caddn.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./Caddn.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g ./Caddn.pdiparams
|
||||
:param config_file: (str)Path of config file, e.g ./infer_cfg.yaml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(Caddn, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.perception.Caddn(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "Caddn initialize failed."
|
||||
|
||||
def predict(self, input_image, cam_data, lidar_data):
|
||||
"""Detect an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param: cam_data: (list)The input camera data
|
||||
:param: lidar_data: (list)The input lidar data
|
||||
:return: PerceptionResult
|
||||
"""
|
||||
return self._model.predict(input_image, cam_data, lidar_data)
|
||||
|
||||
def batch_predict(self, images, cam_data, lidar_data):
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:param: cam_data: (list)The input camera data
|
||||
:param: lidar_data: (list)The input lidar data
|
||||
:return list of PerceptionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images, cam_data, lidar_data)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get CaddnPreprocessor object of the loaded model
|
||||
|
||||
:return CaddnPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get CaddnPostprocessor object of the loaded model
|
||||
|
||||
:return CaddnPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
Reference in New Issue
Block a user