mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	[CI] Standard unittest (#3606)
* standard unittest * fix bugs * fix script
This commit is contained in:
		| @@ -647,6 +647,9 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM): | ||||
|             model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name) | ||||
|             process_weights_after_loading_fn(model_sublayer_name, param) | ||||
|         if self.tie_word_embeddings: | ||||
|             # because we use lazy guard and is not initialized by default | ||||
|             if not self.lm_head.linear.weight._is_initialized(): | ||||
|                 self.lm_head.linear.weight.initialize() | ||||
|             self.lm_head.linear.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0])) | ||||
|  | ||||
|     @paddle.no_grad() | ||||
|   | ||||
| @@ -11,40 +11,6 @@ cd "$run_path" || exit 1 | ||||
| failed_tests_file="failed_tests.log" | ||||
| > "$failed_tests_file" | ||||
|  | ||||
| ################################## | ||||
| # 执行特殊单测case(不符合unittest/pytest格式) | ||||
| ################################## | ||||
| special_tests=( | ||||
|     "graph_optimization/test_cuda_graph_dynamic_subgraph.py" | ||||
|     "graph_optimization/test_cuda_graph_spec_decode.py" | ||||
|     "layers/test_quant_layer.py" | ||||
|     "operators/test_token_penalty.py" | ||||
|     "operators/test_split_fuse.py" | ||||
|     "operators/test_flash_mask_attn.py" | ||||
|     "operators/test_w4afp8_gemm.py" | ||||
|     "model_loader/test_load_ernie_vl.py" | ||||
|     "operators/test_tree_mask.py" | ||||
| ) | ||||
|  | ||||
| failed_special=0 | ||||
| success_special=0 | ||||
|  | ||||
| for test_file in "${special_tests[@]}"; do | ||||
|     if [ -f "$test_file" ]; then | ||||
|         echo "Running special test: $test_file" | ||||
|         python -m coverage run --parallel-mode "$test_file" | ||||
|         status=$? | ||||
|         if [ "$status" -ne 0 ]; then | ||||
|             echo "$test_file" >> "$failed_tests_file" | ||||
|             failed_special=$((failed_special+1)) | ||||
|         else | ||||
|             success_special=$((success_special+1)) | ||||
|         fi | ||||
|     else | ||||
|         echo "Warning: $test_file not found" | ||||
|         failed_special=$((failed_special+1)) | ||||
|     fi | ||||
| done | ||||
|  | ||||
| ################################## | ||||
| # 执行 pytest,每个文件单独跑 | ||||
| @@ -78,9 +44,8 @@ echo "Pytest failed: $failed_pytest" | ||||
|  | ||||
| echo "Special tests total: ${#special_tests[@]}" | ||||
| echo "Special tests successful: $success_special" | ||||
| echo "Special tests failed: $failed_special" | ||||
|  | ||||
| if [ "$failed_pytest" -ne 0 ] || [ "$failed_special" -ne 0 ]; then | ||||
| if [ "$failed_pytest" -ne 0 ]; then | ||||
|     echo "Failed test cases are listed in $failed_tests_file" | ||||
|     cat "$failed_tests_file" | ||||
|     exit 8 | ||||
|   | ||||
| @@ -1,10 +1,22 @@ | ||||
| import unittest | ||||
|  | ||||
| import numpy as np | ||||
| import paddle | ||||
|  | ||||
| from fastdeploy.model_executor.ops.gpu import flash_attention_mask | ||||
|  | ||||
|  | ||||
| def naive_attn(q_input, k_input, v_input, mask): | ||||
| class TestFlashMaskAttention(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         self.bsz = 1 | ||||
|         self.num_head = 8 | ||||
|         self.num_kv_head = 1 | ||||
|         self.q_seq_len = 1024 | ||||
|         self.k_seq_len = 1024 | ||||
|         self.head_dim = 128 | ||||
|         np.random.seed(self.q_seq_len) | ||||
|  | ||||
|     def naive_attn(self, q_input, k_input, v_input, mask): | ||||
|         gqa_group_size = q_input.shape[2] // k_input.shape[2] | ||||
|  | ||||
|         q_cur = q_input.transpose([0, 2, 1, 3]) | ||||
| @@ -28,8 +40,7 @@ def naive_attn(q_input, k_input, v_input, mask): | ||||
|                 out[bsz, hi] = (np.matmul(qk, v_cur[bsz, hi // gqa_group_size]) * exp_sum_inv).astype(q_input.dtype) | ||||
|         return out | ||||
|  | ||||
|  | ||||
| def paddle_flash_attn_mask(q_input, k_input, v_input, mask): | ||||
|     def paddle_flash_attn_mask(self, q_input, k_input, v_input, mask): | ||||
|         bsz = q_input.shape[0] | ||||
|         cu_seq_q = paddle.arange(bsz + 1) * q_input.shape[1] | ||||
|         cu_seq_k = paddle.arange(bsz + 1) * k_input.shape[1] | ||||
| @@ -61,33 +72,28 @@ def paddle_flash_attn_mask(q_input, k_input, v_input, mask): | ||||
|         ) | ||||
|         return out | ||||
|  | ||||
|     def test_flash_attention_mask(self): | ||||
|         q_input = np.random.normal(0, 0.5, size=(self.bsz, self.q_seq_len, self.num_head, self.head_dim)) | ||||
|         k_input = np.random.normal( | ||||
|             0, 0.5, size=(self.bsz, self.q_seq_len + self.k_seq_len, self.num_kv_head, self.head_dim) | ||||
|         ) | ||||
|         v_input = np.random.normal( | ||||
|             0, 0.5, size=(self.bsz, self.q_seq_len + self.k_seq_len, self.num_kv_head, self.head_dim) | ||||
|         ) | ||||
|  | ||||
| def test(bsz, num_head, num_kv_head, q_seq_len, k_seq_len): | ||||
|     head_dim = 128 | ||||
|     q_input = np.random.normal(0, 0.5, size=(bsz, q_seq_len, num_head, head_dim)) | ||||
|     k_input = np.random.normal(0, 0.5, size=(bsz, q_seq_len + k_seq_len, num_kv_head, head_dim)) | ||||
|     v_input = np.random.normal(0, 0.5, size=(bsz, q_seq_len + k_seq_len, num_kv_head, head_dim)) | ||||
|  | ||||
|     random_len = np.random.randint(q_seq_len // 2, size=2) | ||||
|  | ||||
|         random_len = np.random.randint(self.q_seq_len // 2, size=2) | ||||
|         text_len = random_len[0] | ||||
|         image_len = random_len[1] | ||||
|  | ||||
|     mask = np.array([i + 1 for i in range(0, q_seq_len)]) + k_seq_len | ||||
|         mask = np.array([i + 1 for i in range(0, self.q_seq_len)]) + self.k_seq_len | ||||
|         mask[text_len : text_len + image_len] = text_len + image_len + self.k_seq_len | ||||
|  | ||||
|     mask[text_len : text_len + image_len] = text_len + image_len + k_seq_len | ||||
|         naive_attn_out = self.naive_attn(q_input, k_input, v_input, mask) | ||||
|         paddle_attn_out = self.paddle_flash_attn_mask(q_input, k_input, v_input, mask) | ||||
|  | ||||
|     naive_attn_out = naive_attn(q_input, k_input, v_input, mask) | ||||
|     paddle_attn_out = paddle_flash_attn_mask(q_input, k_input, v_input, mask) | ||||
|  | ||||
|     assert float((paddle_attn_out.reshape([-1]) - paddle.to_tensor(naive_attn_out).reshape([-1])).max()) <= 0.05 | ||||
|         max_diff = float((paddle_attn_out.reshape([-1]) - paddle.to_tensor(naive_attn_out).reshape([-1])).max()) | ||||
|         self.assertLessEqual(max_diff, 0.05) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     bsz = 1 | ||||
|     num_head = 8 | ||||
|     num_kv_head = 1 | ||||
|     q_seq_len = 1024 | ||||
|     k_seq_len = 1024 | ||||
|     np.random.seed(q_seq_len) | ||||
|     test(bsz, num_head, num_kv_head, q_seq_len, k_seq_len) | ||||
|     unittest.main() | ||||
|   | ||||
| @@ -1,88 +0,0 @@ | ||||
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
|  | ||||
| """UT for per_channel_fp8_fp8_half_gemm_fused kernel""" | ||||
|  | ||||
| import os | ||||
| import unittest | ||||
| from itertools import product | ||||
|  | ||||
| import numpy as np | ||||
| import paddle | ||||
|  | ||||
|  | ||||
| class Test(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         """ | ||||
|             Initialize the test environment, | ||||
|         including setting random seeds and environment variables. | ||||
|         """ | ||||
|         paddle.seed(2003) | ||||
|         os.environ["FLAGS_use_cutlass_device_best_config_path"] = "default" | ||||
|  | ||||
|     def testcase1(self): | ||||
|         """ | ||||
|         Check if the per_channel_fp8_fp8_half_gemm_fused function works properly. | ||||
|         """ | ||||
|         prop = paddle.device.cuda.get_device_properties() | ||||
|         cc = prop.major * 10 + prop.minor | ||||
|         if cc < 89: | ||||
|             self.skipTest("per_channel_fp8_fp8_half_gemm_fused only support sm89+") | ||||
|  | ||||
|         from fastdeploy.model_executor.ops.gpu import ( | ||||
|             per_channel_fp8_fp8_half_gemm_fused, | ||||
|         ) | ||||
|  | ||||
|         nks = [[2048, 2048], [2048, 5504], [6144, 2048]] | ||||
|         nks = nks + [[4096, 4096], [4096, 12800], [6144, 4096]] | ||||
|         nks = nks + [[5120, 5120], [5120, 13824], [15360, 5120]] | ||||
|  | ||||
|         m = [1, 32, 64, 128, 256, 512, 1024, 2048] | ||||
|  | ||||
|         combinations = list(product(m, nks)) | ||||
|         for m, (n, k) in combinations: | ||||
|             A_bf16 = paddle.rand(shape=[m, k], dtype="bfloat16") | ||||
|             A_fp8 = paddle.cast(A_bf16, "float8_e4m3fn") | ||||
|             B_bf16 = paddle.rand(shape=[n, k], dtype="bfloat16") | ||||
|             B_fp8 = B_bf16.astype("float8_e4m3fn") | ||||
|  | ||||
|             scalar_scale = paddle.full([1], 0.5, dtype="float32") | ||||
|             channel_scale = paddle.rand(shape=[n], dtype="float32") | ||||
|             bias = paddle.rand(shape=[n], dtype="bfloat16") | ||||
|  | ||||
|             result_bf16 = paddle.matmul(A_bf16, B_bf16, transpose_y=True) * scalar_scale * channel_scale + bias | ||||
|             result_fp8 = per_channel_fp8_fp8_half_gemm_fused( | ||||
|                 A_fp8, | ||||
|                 B_fp8, | ||||
|                 bias=bias, | ||||
|                 scalar_scale=scalar_scale, | ||||
|                 channel_scale=channel_scale, | ||||
|                 transpose_x=False, | ||||
|                 transpose_y=True, | ||||
|                 output_dtype="bfloat16", | ||||
|             ) | ||||
|             # absolute_error = paddle.abs(result_bf16 - result_fp8) | ||||
|             # mean_absolute_error = paddle.mean(absolute_error) | ||||
|             relative_error = paddle.abs(result_bf16 - result_fp8) / (paddle.abs(result_bf16)) | ||||
|             mean_relative_error = paddle.mean(relative_error) | ||||
|             np.testing.assert_allclose( | ||||
|                 mean_relative_error.numpy(), | ||||
|                 np.array([0.001]), | ||||
|                 rtol=0.001, | ||||
|                 atol=0.25, | ||||
|             ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     unittest.main() | ||||
| @@ -13,16 +13,22 @@ | ||||
| # limitations under the License. | ||||
|  | ||||
| """UT for set_stop_value""" | ||||
| import unittest | ||||
|  | ||||
| import paddle | ||||
|  | ||||
| from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse | ||||
|  | ||||
| input_ids = [] | ||||
| image_type_ids = [] | ||||
| grid_thw = [] | ||||
|  | ||||
| class TestSplitFuse(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         self.grid_thw = [[6, 20, 20], [6, 40, 20]] | ||||
|         self.split_fuse_img_size = 16 | ||||
|         self.split_fuse_text_size = 384  # 1024 | ||||
|         self.max_seq_len = 2048 | ||||
|         self.image_token_id = 100295 | ||||
|  | ||||
| def split_grid(origin_grid_thw): | ||||
|     def split_grid(self, origin_grid_thw): | ||||
|         # 划分grid_thw,该函数用于视频场景 | ||||
|         # origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12] | ||||
|         grid_thw = [] | ||||
| @@ -38,28 +44,24 @@ def split_grid(origin_grid_thw): | ||||
|                 grid_thw.extend([t, h, w]) | ||||
|         return grid_thw | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     grid_thw = [[6, 20, 20], [6, 40, 20]] | ||||
|     grid_thw = split_grid(grid_thw) | ||||
|     def test_get_mm_split_fuse(self): | ||||
|         grid_thw = self.split_grid(self.grid_thw) | ||||
|         image_bs = len(grid_thw) // 3 | ||||
|         image_type_ids = [0] * image_bs | ||||
|  | ||||
|         # 随机拼接input_ids: [txt0+img1+tx1+img2] | ||||
|         input_ids = [2] * 19 | ||||
|     img1 = [100295] * 100 * 3 | ||||
|         img1 = [self.image_token_id] * 100 * 3 | ||||
|         txt1 = [3] * 19 | ||||
|     img2 = [100295] * 200 * 3 | ||||
|         img2 = [self.image_token_id] * 200 * 3 | ||||
|         input_ids.extend(img1) | ||||
|         input_ids.extend(txt1) | ||||
|         input_ids.extend(img2) | ||||
|  | ||||
|     split_fuse_img_size = 16 | ||||
|     split_fuse_text_size = 384  # 1024 | ||||
|  | ||||
|         seq_len = len(input_ids) | ||||
|         input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64") | ||||
|         image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32") | ||||
|     is_image_token = paddle.where(input_ids_tensor == 100295, 1, 0) | ||||
|         is_image_token = paddle.where(input_ids_tensor == self.image_token_id, 1, 0) | ||||
|         image_token_sum = paddle.cumsum(is_image_token)  # 前缀和 | ||||
|         image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum]) | ||||
|  | ||||
| @@ -69,16 +71,23 @@ if __name__ == "__main__": | ||||
|             image_type_ids_tensor.cast("int32").cpu(), | ||||
|             image_token_sum.cast("int32").cpu(), | ||||
|             grid_thw_tensor.cpu(), | ||||
|         100295, | ||||
|             self.image_token_id, | ||||
|             image_bs, | ||||
|             0, | ||||
|             seq_len, | ||||
|         split_fuse_img_size, | ||||
|         split_fuse_text_size, | ||||
|         2048, | ||||
|             self.split_fuse_img_size, | ||||
|             self.split_fuse_text_size, | ||||
|             self.max_seq_len, | ||||
|         ) | ||||
|  | ||||
|     print("seq_len: ", seq_len) | ||||
|     print("grid_thw", grid_thw_tensor) | ||||
|     print("image_chunk_selections: ", image_chunk_selections) | ||||
|     print("split_fuse_cur_seq_lens: ", split_fuse_cur_seq_lens) | ||||
|         # Verify the outputs are not None | ||||
|         self.assertIsNotNone(image_chunk_selections) | ||||
|         self.assertIsNotNone(split_fuse_cur_seq_lens) | ||||
|  | ||||
|         # Verify the shapes are as expected | ||||
|         self.assertEqual(len(image_chunk_selections.shape), 1) | ||||
|         self.assertEqual(len(split_fuse_cur_seq_lens.shape), 1) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     unittest.main() | ||||
|   | ||||
| @@ -13,40 +13,58 @@ | ||||
| # limitations under the License. | ||||
|  | ||||
| """UT for get_token_penalty""" | ||||
| import unittest | ||||
|  | ||||
| import numpy as np | ||||
| import paddle | ||||
|  | ||||
| from fastdeploy.model_executor.ops.gpu import get_token_penalty_once | ||||
|  | ||||
|  | ||||
| class TestTokenPenalty(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         paddle.seed(2023) | ||||
|         self.pre_ids = paddle.randint(0, 10000, (8, 1000)) | ||||
|         self.pre_ids[:, -1] = self.pre_ids[:, -2] | ||||
|         self.logits = paddle.rand(shape=[8, 10000], dtype="float16") | ||||
|         self.penalty_scores = np.array([1.2] * 8).astype(np.float16).reshape(-1, 1) | ||||
|         self.penalty_scores = paddle.to_tensor(self.penalty_scores) | ||||
|  | ||||
| pre_ids = paddle.randint(0, 10000, (8, 1000)) | ||||
| pre_ids[:, -1] = pre_ids[:, -2] | ||||
| print(pre_ids) | ||||
| logits = paddle.rand(shape=[8, 10000], dtype="float16") | ||||
| penalty_scores = np.array([1.2] * 8).astype(np.float16).reshape(-1, 1) | ||||
| penalty_scores = paddle.to_tensor(penalty_scores) | ||||
|     def test_token_penalty_once(self): | ||||
|         res = get_token_penalty_once(self.pre_ids, self.logits, self.penalty_scores) | ||||
|  | ||||
| print("logits[0][pre_ids[0]]: ", logits[0][pre_ids[0]]) | ||||
| res = get_token_penalty_once(pre_ids, logits, penalty_scores) | ||||
|         # 验证结果形状 | ||||
|         self.assertEqual(res.shape, self.logits.shape) | ||||
|  | ||||
|         # 验证惩罚逻辑 | ||||
|         for i in range(8): | ||||
|     print(f"res[{i}]:{res[i][pre_ids[i]]}") | ||||
|             original_values = self.logits[i][self.pre_ids[i]] | ||||
|             penalized_values = res[i][self.pre_ids[i]] | ||||
|             # 检查是否应用了惩罚 | ||||
|             for orig, penal in zip(original_values.numpy(), penalized_values.numpy()): | ||||
|                 if orig < 0: | ||||
|                     self.assertLess(penal, orig, "负值应该乘以惩罚因子") | ||||
|                 else: | ||||
|                     self.assertLess(penal, orig, "正值应该除以惩罚因子") | ||||
|  | ||||
|     def test_compare_with_naive_implementation(self): | ||||
|         res = get_token_penalty_once(self.pre_ids, self.logits, self.penalty_scores) | ||||
|  | ||||
|         # 朴素实现 | ||||
|         score = paddle.index_sample(self.logits, self.pre_ids) | ||||
|         score = paddle.where(score < 0, score * self.penalty_scores, score / self.penalty_scores) | ||||
|  | ||||
|         bsz = paddle.shape(self.logits)[0] | ||||
|         bsz_range = paddle.arange(start=bsz * 0, end=bsz, step=bsz / bsz, name="bsz_range", dtype="int64").unsqueeze( | ||||
|             -1 | ||||
|         ) | ||||
|         input_ids = self.pre_ids + bsz_range * self.logits.shape[-1] | ||||
|         res2 = paddle.scatter(self.logits.flatten(), input_ids.flatten(), score.flatten()).reshape(self.logits.shape) | ||||
|  | ||||
|         # 比较两种实现的结果差异 | ||||
|         max_diff = (res - res2).abs().max().item() | ||||
|         self.assertLess(max_diff, 1e-5) | ||||
|  | ||||
|  | ||||
| input_ids = pre_ids | ||||
| score = paddle.index_sample(logits, input_ids) | ||||
| score = paddle.where(score < 0, score * penalty_scores, score / penalty_scores) | ||||
|  | ||||
| bsz = paddle.shape(logits)[0]  # TODO: Bsz as input for inference with dynamic batch_size | ||||
| bsz_range = paddle.arange(start=bsz * 0, end=bsz, step=bsz / bsz, name="bsz_range", dtype="int64").unsqueeze(-1) | ||||
| input_ids = input_ids + bsz_range * logits.shape[-1] | ||||
| res2 = paddle.scatter(logits.flatten(), input_ids.flatten(), score.flatten()).reshape(logits.shape) | ||||
| print("-------------------------------------------") | ||||
| for i in range(8): | ||||
|     print(res2[i][pre_ids[i]]) | ||||
|  | ||||
| print("res_sub:") | ||||
| for i in range(8): | ||||
|     print(res2[i][pre_ids[i]] - res[i][pre_ids[i]]) | ||||
|  | ||||
| print((res.numpy() - res2.numpy()).sum()) | ||||
| if __name__ == "__main__": | ||||
|     unittest.main() | ||||
|   | ||||
| @@ -1,5 +1,6 @@ | ||||
| import math | ||||
| import time | ||||
| import unittest | ||||
|  | ||||
| import numpy as np | ||||
| import paddle | ||||
| @@ -10,46 +11,70 @@ from fastdeploy.model_executor.layers.attention.ops import ( | ||||
|     get_block_shape_and_split_kv_block, | ||||
| ) | ||||
|  | ||||
|  | ||||
| class TestTreeMask(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         paddle.seed(0) | ||||
|         self.max_seq_len = 32768 | ||||
|         self.encoder_max_partition_size = self.max_seq_len | ||||
|         self.max_partition_size = self.max_seq_len | ||||
|  | ||||
| max_seq_len = 32768 | ||||
| encoder_max_partition_size = max_seq_len | ||||
| max_partition_size = max_seq_len | ||||
|         self.max_dec_len = 1024 | ||||
|         self.bsz = 64 | ||||
|         self.run_time = 10 | ||||
|         self.warm_up = 2 | ||||
|         self.block_size = 64 | ||||
|         self.head_dim = 128 | ||||
|         self.num_q_head = 20 | ||||
|         self.num_kv_head = 4 | ||||
|         self.dtype = "bfloat16" | ||||
|  | ||||
| max_dec_len = 1024 | ||||
| bsz = 64 | ||||
| run_time = 10 | ||||
| warm_up = 2 | ||||
| block_size = 64 | ||||
| head_dim = 128 | ||||
| num_q_head = 20 | ||||
| num_kv_head = 4 | ||||
| dtype = "bfloat16" | ||||
|         self.rope_3d = False | ||||
|         self.use_neox_rotary_style = False | ||||
|         self.CURRENT_Q = [None] | ||||
|         self.TOTAL_K = [] | ||||
|         self.TOTAL_V = [] | ||||
|  | ||||
| rope_3d = False | ||||
| use_neox_rotary_style = False | ||||
| CURRENT_Q = [None] | ||||
| TOTAL_K = [] | ||||
| TOTAL_V = [] | ||||
|         # Initialize cache and block tables | ||||
|         block_num_per_seq = (self.max_seq_len + self.block_size - 1) // self.block_size | ||||
|         max_block_num = block_num_per_seq * self.bsz | ||||
|         cache_shape = ( | ||||
|             max_block_num, | ||||
|             self.num_kv_head, | ||||
|             self.block_size, | ||||
|             self.head_dim, | ||||
|         ) | ||||
|  | ||||
|         self.cache_k = paddle.zeros(shape=cache_shape).astype(self.dtype) | ||||
|         self.cache_v = paddle.zeros(shape=cache_shape).astype(self.dtype) | ||||
|  | ||||
| def split_qkv(qkv, bsz, seq_len, num_q_head, num_kv_head, head_dim): | ||||
|     # [token_num, (num_q_head + 2 * num_kv_head) * head_dim] | ||||
|     qkv = qkv.reshape([bsz, seq_len, -1, head_dim]) | ||||
|     q = qkv[:, :, :num_q_head, :] | ||||
|     # [bsz,  seq_len, num_q_head, head_dim] | ||||
|     CURRENT_Q[0] = q | ||||
|         self.block_tables = paddle.zeros(shape=(self.bsz, block_num_per_seq), dtype="int32") | ||||
|  | ||||
|     # [bsz,  seq_len, num_kv_head, head_dim] | ||||
|     k = qkv[:, :, num_q_head : num_q_head + num_kv_head, :] | ||||
|     TOTAL_K.append(k) | ||||
|         free_list = list(range(max_block_num - 1, -1, -1)) | ||||
|  | ||||
|     # [bsz,  seq_len, num_kv_head, head_dim] | ||||
|     v = qkv[:, :, num_q_head + num_kv_head :, :] | ||||
|     TOTAL_V.append(v) | ||||
|         for i in range(self.bsz): | ||||
|             need_block_num = (self.max_seq_len + self.block_size - 1) // self.block_size | ||||
|             for j in range(need_block_num): | ||||
|                 block_id = free_list.pop() | ||||
|                 self.block_tables[i, j] = block_id | ||||
|  | ||||
|     def tearDown(self): | ||||
|         self.CURRENT_Q = [None] | ||||
|         self.TOTAL_K = [] | ||||
|         self.TOTAL_V = [] | ||||
|  | ||||
| def get_padding_offset(bsz, seq_lens_this_time, seq_lens_decoder): | ||||
|     def split_qkv(self, qkv, bsz, seq_len): | ||||
|         qkv = qkv.reshape([bsz, seq_len, -1, self.head_dim]) | ||||
|         q = qkv[:, :, : self.num_q_head, :] | ||||
|         self.CURRENT_Q[0] = q | ||||
|  | ||||
|         k = qkv[:, :, self.num_q_head : self.num_q_head + self.num_kv_head, :] | ||||
|         self.TOTAL_K.append(k) | ||||
|  | ||||
|         v = qkv[:, :, self.num_q_head + self.num_kv_head :, :] | ||||
|         self.TOTAL_V.append(v) | ||||
|  | ||||
|     def get_padding_offset(self, bsz, seq_lens_this_time, seq_lens_decoder): | ||||
|         batch_id_per_token = [] | ||||
|         cu_seqlens_q = paddle.zeros(shape=(bsz + 1), dtype="int32") | ||||
|         cu_seqlens_k = paddle.zeros(shape=(bsz + 1), dtype="int32") | ||||
| @@ -66,32 +91,7 @@ def get_padding_offset(bsz, seq_lens_this_time, seq_lens_decoder): | ||||
|             cu_seqlens_k[i + 1] = cum_seq_len_k | ||||
|         return paddle.to_tensor(batch_id_per_token, dtype="int32"), cu_seqlens_q, cu_seqlens_k | ||||
|  | ||||
|  | ||||
| # block_table | ||||
| block_num_per_seq = (max_seq_len + block_size - 1) // block_size | ||||
| max_block_num = block_num_per_seq * bsz | ||||
| cache_shape = ( | ||||
|     max_block_num, | ||||
|     num_kv_head, | ||||
|     block_size, | ||||
|     head_dim, | ||||
| ) | ||||
|  | ||||
| cache_k = paddle.zeros(shape=cache_shape).astype(dtype) | ||||
| cache_v = paddle.zeros(shape=cache_shape).astype(dtype) | ||||
|  | ||||
| block_tables = paddle.zeros(shape=(bsz, block_num_per_seq), dtype="int32") | ||||
|  | ||||
| free_list = list(range(max_block_num - 1, -1, -1)) | ||||
|  | ||||
| for i in range(bsz): | ||||
|     need_block_num = (max_seq_len + block_size - 1) // block_size | ||||
|     for j in range(need_block_num): | ||||
|         block_id = free_list.pop() | ||||
|         block_tables[i, j] = block_id | ||||
|  | ||||
|  | ||||
| def ref_attention(q, k, v, num_q_head, num_kv_head, head_dim, mask): | ||||
|     def ref_attention(self, q, k, v, mask): | ||||
|         q = q.transpose([0, 2, 1, 3]) | ||||
|         if len(k) > 1: | ||||
|             k = paddle.concat(k, axis=1) | ||||
| @@ -105,44 +105,44 @@ def ref_attention(q, k, v, num_q_head, num_kv_head, head_dim, mask): | ||||
|         v = v.transpose([0, 2, 1, 3]) | ||||
|         total_len = k.shape[2] | ||||
|  | ||||
|     scores = q.reshape([bsz, num_kv_head, -1, head_dim]) @ k.transpose([0, 1, 3, 2]) * (1.0 / math.sqrt(head_dim)) | ||||
|     scores = scores.reshape([bsz, num_q_head, -1, total_len]) | ||||
|         scores = ( | ||||
|             q.reshape([self.bsz, self.num_kv_head, -1, self.head_dim]) | ||||
|             @ k.transpose([0, 1, 3, 2]) | ||||
|             * (1.0 / math.sqrt(self.head_dim)) | ||||
|         ) | ||||
|         scores = scores.reshape([self.bsz, self.num_q_head, -1, total_len]) | ||||
|  | ||||
|         if mask is not None: | ||||
|             if mask.ndim == 2: | ||||
|             mask = mask.unsqueeze(0).unsqueeze(0)  # [1,1,q_len,kv_len] | ||||
|                 mask = mask.unsqueeze(0).unsqueeze(0) | ||||
|             elif mask.ndim == 3: | ||||
|             mask = mask.unsqueeze(1)  # [bsz,1,q_len,kv_len] | ||||
|                 mask = mask.unsqueeze(1) | ||||
|             scores = paddle.add(scores, mask) | ||||
|         weights = F.softmax(scores, axis=-1) | ||||
|  | ||||
|     o = weights.reshape([bsz, num_kv_head, -1, total_len]) @ v | ||||
|     return o.reshape([bsz, num_q_head, -1, head_dim]).transpose([0, 2, 1, 3]).reshape([-1, num_q_head, head_dim]) | ||||
|         o = weights.reshape([self.bsz, self.num_kv_head, -1, total_len]) @ v | ||||
|         return ( | ||||
|             o.reshape([self.bsz, self.num_q_head, -1, self.head_dim]) | ||||
|             .transpose([0, 2, 1, 3]) | ||||
|             .reshape([-1, self.num_q_head, self.head_dim]) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def clear_param(): | ||||
|     global CURRENT_Q, TOTAL_K, TOTAL_V | ||||
|     CURRENT_Q = [None] | ||||
|     TOTAL_K = [] | ||||
|     TOTAL_V = [] | ||||
|  | ||||
|  | ||||
| def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None): | ||||
|     def run_append_c16_attention(self, q_len, kv_len, prefill=False, attn_mask=None): | ||||
|         if prefill: | ||||
|             seq_lens_enc = [ | ||||
|                 q_len, | ||||
|         ] * bsz | ||||
|             ] * self.bsz | ||||
|         else: | ||||
|             seq_lens_enc = [ | ||||
|                 0, | ||||
|         ] * bsz | ||||
|             ] * self.bsz | ||||
|  | ||||
|         seq_lens_dec = [ | ||||
|             kv_len, | ||||
|     ] * bsz | ||||
|         ] * self.bsz | ||||
|         seq_lens_cur = [ | ||||
|             q_len, | ||||
|     ] * bsz | ||||
|         ] * self.bsz | ||||
|         token_num = sum(seq_lens_cur) | ||||
|         decoder_step_token_num = 1 if prefill else q_len | ||||
|  | ||||
| @@ -150,39 +150,37 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None): | ||||
|         seq_lens_this_time = paddle.to_tensor(seq_lens_cur, "int32") | ||||
|         seq_lens_decoder = paddle.to_tensor(seq_lens_dec, "int32") | ||||
|  | ||||
|     batch_id_per_token, cu_seqlens_q, cu_seqlens_k = get_padding_offset(bsz, seq_lens_this_time, seq_lens_decoder) | ||||
|         batch_id_per_token, cu_seqlens_q, cu_seqlens_k = self.get_padding_offset( | ||||
|             self.bsz, seq_lens_this_time, seq_lens_decoder | ||||
|         ) | ||||
|  | ||||
|     # random data | ||||
|     qkv_varlen_shape = [token_num, (num_q_head + 2 * num_kv_head) * head_dim] | ||||
|         qkv_varlen_shape = [token_num, (self.num_q_head + 2 * self.num_kv_head) * self.head_dim] | ||||
|         rotary_embs_shape = [ | ||||
|             2, | ||||
|             1, | ||||
|             self.max_seq_len, | ||||
|             1, | ||||
|             self.head_dim if self.use_neox_rotary_style else self.head_dim // 2, | ||||
|         ] | ||||
|  | ||||
|     rotary_embs_shape = [2, 1, max_seq_len, 1, head_dim if use_neox_rotary_style else head_dim // 2] | ||||
|     # qkv_bias_shape = [num_q_head + 2 * num_kv_head, head_dim] | ||||
|  | ||||
|     qkv = paddle.randn(shape=qkv_varlen_shape).astype(dtype) | ||||
|  | ||||
|     # save q, k, v for ref | ||||
|     split_qkv(qkv, bsz, q_len, num_q_head, num_kv_head, head_dim) | ||||
|         qkv = paddle.randn(shape=qkv_varlen_shape).astype(self.dtype) | ||||
|         self.split_qkv(qkv, self.bsz, q_len) | ||||
|  | ||||
|         rotary_embs = paddle.randn(shape=rotary_embs_shape).astype("float32") | ||||
|         rotary_embs[0, :, :, :, :] = 1 | ||||
|         rotary_embs[1, :, :, :, :] = 0 | ||||
|  | ||||
|     # qkv_scale = None | ||||
|     # qkv_bias = None | ||||
|  | ||||
|         cache_k_scale = None | ||||
|         cache_v_scale = None | ||||
|         cache_k_out_scale = None | ||||
|         cache_v_out_scale = None | ||||
|     # shift_bias = None | ||||
|     # smooth_weight = None | ||||
|  | ||||
|         encoder_block_shape_q = 64 | ||||
|         decoder_block_shape_q = 16 | ||||
|  | ||||
|         decode_max_tile_size = ( | ||||
|         bsz | ||||
|         * (decoder_step_token_num * (num_q_head // num_kv_head) + decoder_block_shape_q - 1) | ||||
|             self.bsz | ||||
|             * (decoder_step_token_num * (self.num_q_head // self.num_kv_head) + decoder_block_shape_q - 1) | ||||
|             / decoder_block_shape_q | ||||
|         ) | ||||
|         decoder_batch_ids = paddle.full([int(decode_max_tile_size)], 0, dtype="int32") | ||||
| @@ -208,24 +206,24 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None): | ||||
|             max_len_tensor_cpu, | ||||
|             encoder_block_shape_q, | ||||
|             decoder_block_shape_q, | ||||
|         num_q_head // num_kv_head, | ||||
|         block_size, | ||||
|             self.num_q_head // self.num_kv_head, | ||||
|             self.block_size, | ||||
|             decoder_step_token_num, | ||||
|         ) | ||||
|         s_time = 0 | ||||
|     for i in range(run_time + warm_up): | ||||
|         if i == warm_up: | ||||
|         for i in range(self.run_time + self.warm_up): | ||||
|             if i == self.warm_up: | ||||
|                 s_time = time.time() | ||||
|             out = append_attention( | ||||
|                 qkv, | ||||
|             cache_k, | ||||
|             cache_v, | ||||
|                 self.cache_k, | ||||
|                 self.cache_v, | ||||
|                 seq_lens_encoder, | ||||
|                 seq_lens_decoder, | ||||
|                 seq_lens_this_time, | ||||
|                 batch_id_per_token, | ||||
|                 cu_seqlens_q, | ||||
|             block_tables, | ||||
|                 self.block_tables, | ||||
|                 encoder_batch_ids, | ||||
|                 encoder_tile_ids_per_batch, | ||||
|                 encoder_num_blocks, | ||||
| @@ -238,15 +236,15 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None): | ||||
|                 max_len_tensor_cpu, | ||||
|                 max_len_kv, | ||||
|                 rotary_embs, | ||||
|             attn_mask,  # attn_mask | ||||
|                 attn_mask, | ||||
|                 None, | ||||
|                 None, | ||||
|                 cache_k_scale, | ||||
|                 cache_v_scale, | ||||
|                 cache_k_out_scale, | ||||
|                 cache_v_out_scale, | ||||
|             None,  # cache_k_zp | ||||
|             None,  # cache_v_zp | ||||
|                 None, | ||||
|                 None, | ||||
|                 None, | ||||
|                 None, | ||||
|                 None, | ||||
| @@ -255,47 +253,45 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None): | ||||
|                 None, | ||||
|                 1e-6, | ||||
|                 "bf16", | ||||
|             "none",  # cache_quant_type | ||||
|             use_neox_rotary_style, | ||||
|             rope_3d, | ||||
|             max_seq_len, | ||||
|                 "none", | ||||
|                 self.use_neox_rotary_style, | ||||
|                 self.rope_3d, | ||||
|                 self.max_seq_len, | ||||
|                 0.0, | ||||
|                 0.0, | ||||
|             -1.0,  # out_linear_in_scale | ||||
|             encoder_block_shape_q,  # encoder_block_shape_q | ||||
|             decoder_block_shape_q,  # decoder_block_shape_q | ||||
|             max_partition_size,  # max_partition_size | ||||
|             encoder_max_partition_size,  # encoder_max_partition_size | ||||
|             decoder_step_token_num,  # speculate_max_draft_token_num | ||||
|             True,  # causal | ||||
|             decoder_step_token_num > 1,  # speculate_decoder | ||||
|                 -1.0, | ||||
|                 encoder_block_shape_q, | ||||
|                 decoder_block_shape_q, | ||||
|                 self.max_partition_size, | ||||
|                 self.encoder_max_partition_size, | ||||
|                 decoder_step_token_num, | ||||
|                 True, | ||||
|                 decoder_step_token_num > 1, | ||||
|             ) | ||||
|             paddle.device.synchronize() | ||||
|         e_time = time.time() | ||||
|     print(f"mean infer time: {np.mean((e_time - s_time) * 1000 / run_time):.2f}") | ||||
|     return out[0].reshape([token_num, num_q_head, head_dim]) | ||||
|         print(f"mean infer time: {np.mean((e_time - s_time) * 1000 / self.run_time):.2f}") | ||||
|         return out[0].reshape([token_num, self.num_q_head, self.head_dim]) | ||||
|  | ||||
|  | ||||
| def test_naive_speculative_decoding(num_q_head, num_kv_head, head_dim): | ||||
|     def test_naive_speculative_decoding(self): | ||||
|         prefill_len = 8192 | ||||
|         dec_len_q = 5 | ||||
|         total_len = prefill_len + dec_len_q | ||||
|     mask = paddle.tril(paddle.ones((bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) | ||||
|         mask = paddle.tril(paddle.ones((self.bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) | ||||
|         mask = paddle.where(mask == 1, paddle.zeros_like(mask), paddle.full_like(mask, fill_value=float("-inf"))) | ||||
|     test_append_c16_attention(prefill_len, 0, True) | ||||
|     dec_out = test_append_c16_attention(dec_len_q, prefill_len, False) | ||||
|         self.run_append_c16_attention(prefill_len, 0, True) | ||||
|         dec_out = self.run_append_c16_attention(dec_len_q, prefill_len, False) | ||||
|  | ||||
|     ref_out = ref_attention(CURRENT_Q[0], TOTAL_K, TOTAL_V, num_q_head, num_kv_head, head_dim, mask) | ||||
|         ref_out = self.ref_attention(self.CURRENT_Q[0], self.TOTAL_K, self.TOTAL_V, mask) | ||||
|         np.testing.assert_allclose( | ||||
|             ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03 | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def test_mask(num_q_head, num_kv_head, head_dim): | ||||
|     def test_mask(self): | ||||
|         prefill_len = 8192 | ||||
|         dec_len_q = 5 | ||||
|         total_len = prefill_len + dec_len_q | ||||
|     mask = paddle.tril(paddle.ones((bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) | ||||
|         mask = paddle.tril(paddle.ones((self.bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) | ||||
|         mask_ref = paddle.where(mask == 1, paddle.zeros_like(mask), paddle.full_like(mask, fill_value=float("-inf"))) | ||||
|  | ||||
|         mask_append_attn = mask[:, :, prefill_len:] | ||||
| @@ -305,28 +301,20 @@ def test_mask(num_q_head, num_kv_head, head_dim): | ||||
|             paddle.full_like(mask_append_attn, fill_value=True, dtype=bool), | ||||
|         ) | ||||
|  | ||||
|     test_append_c16_attention(prefill_len, 0, True) | ||||
|     dec_out = test_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn) | ||||
|         self.run_append_c16_attention(prefill_len, 0, True) | ||||
|         dec_out = self.run_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn) | ||||
|  | ||||
|     ref_out = ref_attention(CURRENT_Q[0], TOTAL_K, TOTAL_V, num_q_head, num_kv_head, head_dim, mask_ref) | ||||
|         ref_out = self.ref_attention(self.CURRENT_Q[0], self.TOTAL_K, self.TOTAL_V, mask_ref) | ||||
|  | ||||
|         np.testing.assert_allclose( | ||||
|             ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03 | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def test_tree_mask(num_q_head, num_kv_head, head_dim): | ||||
|     # tree | ||||
|     #       [N,   N+1,    N+1,    N+2,    N+2] | ||||
|     # N     [0,   -inf,   -inf,   -inf,   -inf] | ||||
|     # N+1   [0,   0,      -inf,   -inf,   -inf] | ||||
|     # N+1   [0,   -inf,   0,      -inf,   -inf] | ||||
|     # N+2   [0,   0,      -inf,   0,      -inf] | ||||
|     # N+2   [0,   -inf,   0,      -inf,   0] | ||||
|     def test_tree_mask(self): | ||||
|         prefill_len = 8192 | ||||
|         dec_len_q = 5 | ||||
|         total_len = prefill_len + dec_len_q | ||||
|     mask = paddle.tril(paddle.ones((bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) | ||||
|         mask = paddle.tril(paddle.ones((self.bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) | ||||
|         mask[:, 2, prefill_len + 1] = 0 | ||||
|         mask[:, 3, prefill_len + 2] = 0 | ||||
|         mask[:, 4, prefill_len + 1] = 0 | ||||
| @@ -341,20 +329,13 @@ def test_tree_mask(num_q_head, num_kv_head, head_dim): | ||||
|             paddle.full_like(mask_append_attn, fill_value=True, dtype=bool), | ||||
|         ) | ||||
|  | ||||
|     test_append_c16_attention(prefill_len, 0, True) | ||||
|     dec_out = test_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn) | ||||
|     ref_out = ref_attention(CURRENT_Q[0], TOTAL_K, TOTAL_V, num_q_head, num_kv_head, head_dim, mask_ref) | ||||
|         self.run_append_c16_attention(prefill_len, 0, True) | ||||
|         dec_out = self.run_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn) | ||||
|         ref_out = self.ref_attention(self.CURRENT_Q[0], self.TOTAL_K, self.TOTAL_V, mask_ref) | ||||
|         np.testing.assert_allclose( | ||||
|             ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03 | ||||
|         ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     test_naive_speculative_decoding(num_q_head, num_kv_head, head_dim) | ||||
|     clear_param() | ||||
|  | ||||
|     test_mask(num_q_head, num_kv_head, head_dim) | ||||
|     clear_param() | ||||
|  | ||||
|     test_tree_mask(num_q_head, num_kv_head, head_dim) | ||||
|     unittest.main() | ||||
|   | ||||
| @@ -12,17 +12,47 @@ | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
|  | ||||
| import unittest | ||||
|  | ||||
| import numpy as np | ||||
| import paddle | ||||
|  | ||||
| from fastdeploy.model_executor.ops.gpu import w4afp8_gemm, w4afp8_gemm_weight_convert | ||||
|  | ||||
|  | ||||
| def w4afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_dequant_scale, BATCH, N): | ||||
| class TestW4AFP8GEMM(unittest.TestCase): | ||||
|     def setUp(self): | ||||
|         paddle.seed(0) | ||||
|         self.tokens_per_group = 256 | ||||
|         self.N = 256 | ||||
|         self.K = 256 | ||||
|         self.BATCH = 1 | ||||
|         self.TokenPadding = 0 | ||||
|  | ||||
|         tokens = [self.tokens_per_group] * self.BATCH | ||||
|         self.tokens_perfix_sum = np.cumsum(tokens) | ||||
|  | ||||
|         self.tokens = paddle.to_tensor(tokens, dtype="int64") | ||||
|         self.tokens_perfix_sum = paddle.to_tensor(self.tokens_perfix_sum, dtype="int64") | ||||
|         self.all_tokens = int(self.tokens.sum()) | ||||
|  | ||||
|         self.input_fp8 = paddle.randn([self.all_tokens, self.K], dtype="bfloat16").astype(paddle.float8_e4m3fn) | ||||
|         self.input_bf16 = self.input_fp8.astype("bfloat16") | ||||
|         self.weight = paddle.randn([self.BATCH, self.N, self.K], dtype="bfloat16") / 10 | ||||
|  | ||||
|         self.weight_scale = 7 / self.weight.abs().max(axis=-1).reshape([self.BATCH, self.N, 1]) | ||||
|         self.weight_quant = (self.weight * self.weight_scale).astype("int") + 7 | ||||
|         self.weight_quant = paddle.clip(self.weight_quant, 0, 14) | ||||
|         self.weight_quant = self.weight_quant.astype("bfloat16") | ||||
|         self.weight_dequant_scale = 1 / self.weight_scale.astype("float32") | ||||
|         self.input_row_sum = self.input_bf16.sum(axis=1) * -7 / 512 | ||||
|         self.max_tokens = int(self.tokens.max()) | ||||
|  | ||||
|     def w4afp8_gemm_naive(self, input_bf16, weight_quant, tokens, weight_dequant_scale): | ||||
|         all_tokens = int(tokens.sum()) | ||||
|     out = paddle.zeros([all_tokens, N], dtype="bfloat16") | ||||
|         out = paddle.zeros([all_tokens, self.N], dtype="bfloat16") | ||||
|         pre_fix_token = 0 | ||||
|     for i in range(BATCH): | ||||
|         for i in range(self.BATCH): | ||||
|             input = input_bf16[pre_fix_token : pre_fix_token + tokens[i], :] | ||||
|             weight = (weight_quant[i] - 7.0) * weight_dequant_scale[i] | ||||
|             out_i = paddle.matmul(input, weight.astype("bfloat16"), transpose_y=True) | ||||
| @@ -30,74 +60,49 @@ def w4afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_dequant_scale, BA | ||||
|             pre_fix_token += tokens[i] | ||||
|         return out | ||||
|  | ||||
|  | ||||
| def permute_scale(weight_scale): | ||||
|     weight_scale = weight_scale.reshape([BATCH, N]) | ||||
|     def permute_scale(self, weight_scale): | ||||
|         weight_scale = weight_scale.reshape([self.BATCH, self.N]) | ||||
|         temp = paddle.zeros([16]) | ||||
|     for b in range(BATCH): | ||||
|         for n in range(0, N, 16): | ||||
|         for b in range(self.BATCH): | ||||
|             for n in range(0, self.N, 16): | ||||
|                 temp[:] = weight_scale[b, n : n + 16] | ||||
|                 for j in range(0, 16, 2): | ||||
|                     weight_scale[b, n + j] = temp[j // 2] | ||||
|                     weight_scale[b, n + j + 1] = temp[j // 2 + 8] | ||||
|         return weight_scale | ||||
|  | ||||
|     def test_w4afp8_gemm(self): | ||||
|         out_naive = self.w4afp8_gemm_naive(self.input_bf16, self.weight_quant, self.tokens, self.weight_dequant_scale) | ||||
|  | ||||
| paddle.seed(0) | ||||
| tokens_per_group = 256 | ||||
| N = 256 | ||||
| K = 256 | ||||
| BATCH = 1 | ||||
| TokenPadding = 0 | ||||
|         weight_dequant_scale = paddle.to_tensor(self.permute_scale(self.weight_dequant_scale) * 512) | ||||
|         weight_int4 = w4afp8_gemm_weight_convert(self.weight_quant.astype("uint8").cpu()) | ||||
|  | ||||
| tokens = [tokens_per_group] * BATCH | ||||
| tokens_perfix_sum = np.cumsum(tokens) | ||||
|  | ||||
|  | ||||
| tokens = paddle.to_tensor(tokens, dtype="int64") | ||||
| tokens_perfix_sum = paddle.to_tensor(tokens_perfix_sum, dtype="int64") | ||||
|  | ||||
| all_tokens = int(tokens.sum()) | ||||
|  | ||||
| input_fp8 = paddle.randn([all_tokens, K], dtype="bfloat16").astype(paddle.float8_e4m3fn) | ||||
| input_bf16 = input_fp8.astype("bfloat16") | ||||
| weight = paddle.randn([BATCH, N, K], dtype="bfloat16") / 10 | ||||
|  | ||||
| weight_scale = 7 / weight.abs().max(axis=-1).reshape([BATCH, N, 1]) | ||||
| weight_quant = (weight * weight_scale).astype("int") + 7 | ||||
| weight_quant = paddle.clip(weight_quant, 0, 14) | ||||
| weight_quant = weight_quant.astype("bfloat16") | ||||
| weight_dequant_scale = 1 / weight_scale.astype("float32") | ||||
| input_row_sum = input_bf16.sum(axis=1) * -7 / 512 | ||||
| max_tokens = int(tokens.max()) | ||||
|  | ||||
| out_naive = w4afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_dequant_scale, BATCH, N) | ||||
| weight_dequant_scale = paddle.to_tensor(permute_scale(weight_dequant_scale) * 512) | ||||
|  | ||||
| weight_int4 = w4afp8_gemm_weight_convert(weight_quant.astype("uint8").cpu()) | ||||
|  | ||||
| if TokenPadding == 0: | ||||
|         if self.TokenPadding == 0: | ||||
|             out_cuda = w4afp8_gemm( | ||||
|         input_fp8, | ||||
|                 self.input_fp8, | ||||
|                 weight_int4.cuda(), | ||||
|         tokens_perfix_sum, | ||||
|         input_row_sum.astype("float32"), | ||||
|                 self.tokens_perfix_sum, | ||||
|                 self.input_row_sum.astype("float32"), | ||||
|                 weight_dequant_scale.astype("float32"), | ||||
|         int(TokenPadding), | ||||
|         max_tokens, | ||||
|                 int(self.TokenPadding), | ||||
|                 self.max_tokens, | ||||
|                 True, | ||||
|             ) | ||||
|         else: | ||||
|             out_cuda = w4afp8_gemm( | ||||
|         input_fp8, | ||||
|                 self.input_fp8, | ||||
|                 weight_int4.cuda(), | ||||
|         tokens, | ||||
|         input_row_sum.astype("float32"), | ||||
|                 self.tokens, | ||||
|                 self.input_row_sum.astype("float32"), | ||||
|                 weight_dequant_scale.astype("float32"), | ||||
|         int(TokenPadding), | ||||
|         max_tokens, | ||||
|                 int(self.TokenPadding), | ||||
|                 self.max_tokens, | ||||
|                 True, | ||||
|             ) | ||||
|  | ||||
|         gap = (out_cuda - out_naive).abs() | ||||
| assert float(gap.mean()) < 0.07 | ||||
|         self.assertLess(float(gap.mean()), 0.07) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     unittest.main() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 YuanRisheng
					YuanRisheng