[CI] Standard unittest (#3606)

* standard unittest

* fix bugs

* fix script
This commit is contained in:
YuanRisheng
2025-08-26 19:03:11 +08:00
committed by GitHub
parent 2f28f40d90
commit 642480f5f6
8 changed files with 558 additions and 659 deletions

View File

@@ -647,6 +647,9 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name) model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param) process_weights_after_loading_fn(model_sublayer_name, param)
if self.tie_word_embeddings: if self.tie_word_embeddings:
# because we use lazy guard and is not initialized by default
if not self.lm_head.linear.weight._is_initialized():
self.lm_head.linear.weight.initialize()
self.lm_head.linear.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0])) self.lm_head.linear.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0]))
@paddle.no_grad() @paddle.no_grad()

View File

@@ -11,40 +11,6 @@ cd "$run_path" || exit 1
failed_tests_file="failed_tests.log" failed_tests_file="failed_tests.log"
> "$failed_tests_file" > "$failed_tests_file"
##################################
# 执行特殊单测case(不符合unittest/pytest格式)
##################################
special_tests=(
"graph_optimization/test_cuda_graph_dynamic_subgraph.py"
"graph_optimization/test_cuda_graph_spec_decode.py"
"layers/test_quant_layer.py"
"operators/test_token_penalty.py"
"operators/test_split_fuse.py"
"operators/test_flash_mask_attn.py"
"operators/test_w4afp8_gemm.py"
"model_loader/test_load_ernie_vl.py"
"operators/test_tree_mask.py"
)
failed_special=0
success_special=0
for test_file in "${special_tests[@]}"; do
if [ -f "$test_file" ]; then
echo "Running special test: $test_file"
python -m coverage run --parallel-mode "$test_file"
status=$?
if [ "$status" -ne 0 ]; then
echo "$test_file" >> "$failed_tests_file"
failed_special=$((failed_special+1))
else
success_special=$((success_special+1))
fi
else
echo "Warning: $test_file not found"
failed_special=$((failed_special+1))
fi
done
################################## ##################################
# 执行 pytest每个文件单独跑 # 执行 pytest每个文件单独跑
@@ -78,9 +44,8 @@ echo "Pytest failed: $failed_pytest"
echo "Special tests total: ${#special_tests[@]}" echo "Special tests total: ${#special_tests[@]}"
echo "Special tests successful: $success_special" echo "Special tests successful: $success_special"
echo "Special tests failed: $failed_special"
if [ "$failed_pytest" -ne 0 ] || [ "$failed_special" -ne 0 ]; then if [ "$failed_pytest" -ne 0 ]; then
echo "Failed test cases are listed in $failed_tests_file" echo "Failed test cases are listed in $failed_tests_file"
cat "$failed_tests_file" cat "$failed_tests_file"
exit 8 exit 8

View File

@@ -1,10 +1,22 @@
import unittest
import numpy as np import numpy as np
import paddle import paddle
from fastdeploy.model_executor.ops.gpu import flash_attention_mask from fastdeploy.model_executor.ops.gpu import flash_attention_mask
def naive_attn(q_input, k_input, v_input, mask): class TestFlashMaskAttention(unittest.TestCase):
def setUp(self):
self.bsz = 1
self.num_head = 8
self.num_kv_head = 1
self.q_seq_len = 1024
self.k_seq_len = 1024
self.head_dim = 128
np.random.seed(self.q_seq_len)
def naive_attn(self, q_input, k_input, v_input, mask):
gqa_group_size = q_input.shape[2] // k_input.shape[2] gqa_group_size = q_input.shape[2] // k_input.shape[2]
q_cur = q_input.transpose([0, 2, 1, 3]) q_cur = q_input.transpose([0, 2, 1, 3])
@@ -28,8 +40,7 @@ def naive_attn(q_input, k_input, v_input, mask):
out[bsz, hi] = (np.matmul(qk, v_cur[bsz, hi // gqa_group_size]) * exp_sum_inv).astype(q_input.dtype) out[bsz, hi] = (np.matmul(qk, v_cur[bsz, hi // gqa_group_size]) * exp_sum_inv).astype(q_input.dtype)
return out return out
def paddle_flash_attn_mask(self, q_input, k_input, v_input, mask):
def paddle_flash_attn_mask(q_input, k_input, v_input, mask):
bsz = q_input.shape[0] bsz = q_input.shape[0]
cu_seq_q = paddle.arange(bsz + 1) * q_input.shape[1] cu_seq_q = paddle.arange(bsz + 1) * q_input.shape[1]
cu_seq_k = paddle.arange(bsz + 1) * k_input.shape[1] cu_seq_k = paddle.arange(bsz + 1) * k_input.shape[1]
@@ -61,33 +72,28 @@ def paddle_flash_attn_mask(q_input, k_input, v_input, mask):
) )
return out return out
def test_flash_attention_mask(self):
q_input = np.random.normal(0, 0.5, size=(self.bsz, self.q_seq_len, self.num_head, self.head_dim))
k_input = np.random.normal(
0, 0.5, size=(self.bsz, self.q_seq_len + self.k_seq_len, self.num_kv_head, self.head_dim)
)
v_input = np.random.normal(
0, 0.5, size=(self.bsz, self.q_seq_len + self.k_seq_len, self.num_kv_head, self.head_dim)
)
def test(bsz, num_head, num_kv_head, q_seq_len, k_seq_len): random_len = np.random.randint(self.q_seq_len // 2, size=2)
head_dim = 128
q_input = np.random.normal(0, 0.5, size=(bsz, q_seq_len, num_head, head_dim))
k_input = np.random.normal(0, 0.5, size=(bsz, q_seq_len + k_seq_len, num_kv_head, head_dim))
v_input = np.random.normal(0, 0.5, size=(bsz, q_seq_len + k_seq_len, num_kv_head, head_dim))
random_len = np.random.randint(q_seq_len // 2, size=2)
text_len = random_len[0] text_len = random_len[0]
image_len = random_len[1] image_len = random_len[1]
mask = np.array([i + 1 for i in range(0, q_seq_len)]) + k_seq_len mask = np.array([i + 1 for i in range(0, self.q_seq_len)]) + self.k_seq_len
mask[text_len : text_len + image_len] = text_len + image_len + self.k_seq_len
mask[text_len : text_len + image_len] = text_len + image_len + k_seq_len naive_attn_out = self.naive_attn(q_input, k_input, v_input, mask)
paddle_attn_out = self.paddle_flash_attn_mask(q_input, k_input, v_input, mask)
naive_attn_out = naive_attn(q_input, k_input, v_input, mask) max_diff = float((paddle_attn_out.reshape([-1]) - paddle.to_tensor(naive_attn_out).reshape([-1])).max())
paddle_attn_out = paddle_flash_attn_mask(q_input, k_input, v_input, mask) self.assertLessEqual(max_diff, 0.05)
assert float((paddle_attn_out.reshape([-1]) - paddle.to_tensor(naive_attn_out).reshape([-1])).max()) <= 0.05
if __name__ == "__main__": if __name__ == "__main__":
bsz = 1 unittest.main()
num_head = 8
num_kv_head = 1
q_seq_len = 1024
k_seq_len = 1024
np.random.seed(q_seq_len)
test(bsz, num_head, num_kv_head, q_seq_len, k_seq_len)

View File

@@ -1,88 +0,0 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""UT for per_channel_fp8_fp8_half_gemm_fused kernel"""
import os
import unittest
from itertools import product
import numpy as np
import paddle
class Test(unittest.TestCase):
def setUp(self):
"""
Initialize the test environment,
including setting random seeds and environment variables.
"""
paddle.seed(2003)
os.environ["FLAGS_use_cutlass_device_best_config_path"] = "default"
def testcase1(self):
"""
Check if the per_channel_fp8_fp8_half_gemm_fused function works properly.
"""
prop = paddle.device.cuda.get_device_properties()
cc = prop.major * 10 + prop.minor
if cc < 89:
self.skipTest("per_channel_fp8_fp8_half_gemm_fused only support sm89+")
from fastdeploy.model_executor.ops.gpu import (
per_channel_fp8_fp8_half_gemm_fused,
)
nks = [[2048, 2048], [2048, 5504], [6144, 2048]]
nks = nks + [[4096, 4096], [4096, 12800], [6144, 4096]]
nks = nks + [[5120, 5120], [5120, 13824], [15360, 5120]]
m = [1, 32, 64, 128, 256, 512, 1024, 2048]
combinations = list(product(m, nks))
for m, (n, k) in combinations:
A_bf16 = paddle.rand(shape=[m, k], dtype="bfloat16")
A_fp8 = paddle.cast(A_bf16, "float8_e4m3fn")
B_bf16 = paddle.rand(shape=[n, k], dtype="bfloat16")
B_fp8 = B_bf16.astype("float8_e4m3fn")
scalar_scale = paddle.full([1], 0.5, dtype="float32")
channel_scale = paddle.rand(shape=[n], dtype="float32")
bias = paddle.rand(shape=[n], dtype="bfloat16")
result_bf16 = paddle.matmul(A_bf16, B_bf16, transpose_y=True) * scalar_scale * channel_scale + bias
result_fp8 = per_channel_fp8_fp8_half_gemm_fused(
A_fp8,
B_fp8,
bias=bias,
scalar_scale=scalar_scale,
channel_scale=channel_scale,
transpose_x=False,
transpose_y=True,
output_dtype="bfloat16",
)
# absolute_error = paddle.abs(result_bf16 - result_fp8)
# mean_absolute_error = paddle.mean(absolute_error)
relative_error = paddle.abs(result_bf16 - result_fp8) / (paddle.abs(result_bf16))
mean_relative_error = paddle.mean(relative_error)
np.testing.assert_allclose(
mean_relative_error.numpy(),
np.array([0.001]),
rtol=0.001,
atol=0.25,
)
if __name__ == "__main__":
unittest.main()

View File

@@ -13,16 +13,22 @@
# limitations under the License. # limitations under the License.
"""UT for set_stop_value""" """UT for set_stop_value"""
import unittest
import paddle import paddle
from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse from fastdeploy.model_executor.ops.gpu import get_mm_split_fuse
input_ids = []
image_type_ids = []
grid_thw = []
class TestSplitFuse(unittest.TestCase):
def setUp(self):
self.grid_thw = [[6, 20, 20], [6, 40, 20]]
self.split_fuse_img_size = 16
self.split_fuse_text_size = 384 # 1024
self.max_seq_len = 2048
self.image_token_id = 100295
def split_grid(origin_grid_thw): def split_grid(self, origin_grid_thw):
# 划分grid_thw该函数用于视频场景 # 划分grid_thw该函数用于视频场景
# origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12] # origin_grid_thw = [6, 10, 12] ---> [2, 10, 12, 2, 10, 12, 2, 10, 12]
grid_thw = [] grid_thw = []
@@ -38,28 +44,24 @@ def split_grid(origin_grid_thw):
grid_thw.extend([t, h, w]) grid_thw.extend([t, h, w])
return grid_thw return grid_thw
def test_get_mm_split_fuse(self):
if __name__ == "__main__": grid_thw = self.split_grid(self.grid_thw)
grid_thw = [[6, 20, 20], [6, 40, 20]]
grid_thw = split_grid(grid_thw)
image_bs = len(grid_thw) // 3 image_bs = len(grid_thw) // 3
image_type_ids = [0] * image_bs image_type_ids = [0] * image_bs
# 随机拼接input_ids: [txt0+img1+tx1+img2] # 随机拼接input_ids: [txt0+img1+tx1+img2]
input_ids = [2] * 19 input_ids = [2] * 19
img1 = [100295] * 100 * 3 img1 = [self.image_token_id] * 100 * 3
txt1 = [3] * 19 txt1 = [3] * 19
img2 = [100295] * 200 * 3 img2 = [self.image_token_id] * 200 * 3
input_ids.extend(img1) input_ids.extend(img1)
input_ids.extend(txt1) input_ids.extend(txt1)
input_ids.extend(img2) input_ids.extend(img2)
split_fuse_img_size = 16
split_fuse_text_size = 384 # 1024
seq_len = len(input_ids) seq_len = len(input_ids)
input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64") input_ids_tensor = paddle.to_tensor(input_ids, dtype="int64")
image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32") image_type_ids_tensor = paddle.to_tensor(image_type_ids, dtype="int32")
is_image_token = paddle.where(input_ids_tensor == 100295, 1, 0) is_image_token = paddle.where(input_ids_tensor == self.image_token_id, 1, 0)
image_token_sum = paddle.cumsum(is_image_token) # 前缀和 image_token_sum = paddle.cumsum(is_image_token) # 前缀和
image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum]) image_token_sum = paddle.concat([paddle.zeros([1], dtype="int64"), image_token_sum])
@@ -69,16 +71,23 @@ if __name__ == "__main__":
image_type_ids_tensor.cast("int32").cpu(), image_type_ids_tensor.cast("int32").cpu(),
image_token_sum.cast("int32").cpu(), image_token_sum.cast("int32").cpu(),
grid_thw_tensor.cpu(), grid_thw_tensor.cpu(),
100295, self.image_token_id,
image_bs, image_bs,
0, 0,
seq_len, seq_len,
split_fuse_img_size, self.split_fuse_img_size,
split_fuse_text_size, self.split_fuse_text_size,
2048, self.max_seq_len,
) )
print("seq_len: ", seq_len) # Verify the outputs are not None
print("grid_thw", grid_thw_tensor) self.assertIsNotNone(image_chunk_selections)
print("image_chunk_selections: ", image_chunk_selections) self.assertIsNotNone(split_fuse_cur_seq_lens)
print("split_fuse_cur_seq_lens: ", split_fuse_cur_seq_lens)
# Verify the shapes are as expected
self.assertEqual(len(image_chunk_selections.shape), 1)
self.assertEqual(len(split_fuse_cur_seq_lens.shape), 1)
if __name__ == "__main__":
unittest.main()

View File

@@ -13,40 +13,58 @@
# limitations under the License. # limitations under the License.
"""UT for get_token_penalty""" """UT for get_token_penalty"""
import unittest
import numpy as np import numpy as np
import paddle import paddle
from fastdeploy.model_executor.ops.gpu import get_token_penalty_once from fastdeploy.model_executor.ops.gpu import get_token_penalty_once
class TestTokenPenalty(unittest.TestCase):
def setUp(self):
paddle.seed(2023) paddle.seed(2023)
self.pre_ids = paddle.randint(0, 10000, (8, 1000))
self.pre_ids[:, -1] = self.pre_ids[:, -2]
self.logits = paddle.rand(shape=[8, 10000], dtype="float16")
self.penalty_scores = np.array([1.2] * 8).astype(np.float16).reshape(-1, 1)
self.penalty_scores = paddle.to_tensor(self.penalty_scores)
pre_ids = paddle.randint(0, 10000, (8, 1000)) def test_token_penalty_once(self):
pre_ids[:, -1] = pre_ids[:, -2] res = get_token_penalty_once(self.pre_ids, self.logits, self.penalty_scores)
print(pre_ids)
logits = paddle.rand(shape=[8, 10000], dtype="float16")
penalty_scores = np.array([1.2] * 8).astype(np.float16).reshape(-1, 1)
penalty_scores = paddle.to_tensor(penalty_scores)
print("logits[0][pre_ids[0]]: ", logits[0][pre_ids[0]]) # 验证结果形状
res = get_token_penalty_once(pre_ids, logits, penalty_scores) self.assertEqual(res.shape, self.logits.shape)
# 验证惩罚逻辑
for i in range(8): for i in range(8):
print(f"res[{i}]:{res[i][pre_ids[i]]}") original_values = self.logits[i][self.pre_ids[i]]
penalized_values = res[i][self.pre_ids[i]]
# 检查是否应用了惩罚
for orig, penal in zip(original_values.numpy(), penalized_values.numpy()):
if orig < 0:
self.assertLess(penal, orig, "负值应该乘以惩罚因子")
else:
self.assertLess(penal, orig, "正值应该除以惩罚因子")
def test_compare_with_naive_implementation(self):
res = get_token_penalty_once(self.pre_ids, self.logits, self.penalty_scores)
# 朴素实现
score = paddle.index_sample(self.logits, self.pre_ids)
score = paddle.where(score < 0, score * self.penalty_scores, score / self.penalty_scores)
bsz = paddle.shape(self.logits)[0]
bsz_range = paddle.arange(start=bsz * 0, end=bsz, step=bsz / bsz, name="bsz_range", dtype="int64").unsqueeze(
-1
)
input_ids = self.pre_ids + bsz_range * self.logits.shape[-1]
res2 = paddle.scatter(self.logits.flatten(), input_ids.flatten(), score.flatten()).reshape(self.logits.shape)
# 比较两种实现的结果差异
max_diff = (res - res2).abs().max().item()
self.assertLess(max_diff, 1e-5)
input_ids = pre_ids if __name__ == "__main__":
score = paddle.index_sample(logits, input_ids) unittest.main()
score = paddle.where(score < 0, score * penalty_scores, score / penalty_scores)
bsz = paddle.shape(logits)[0] # TODO: Bsz as input for inference with dynamic batch_size
bsz_range = paddle.arange(start=bsz * 0, end=bsz, step=bsz / bsz, name="bsz_range", dtype="int64").unsqueeze(-1)
input_ids = input_ids + bsz_range * logits.shape[-1]
res2 = paddle.scatter(logits.flatten(), input_ids.flatten(), score.flatten()).reshape(logits.shape)
print("-------------------------------------------")
for i in range(8):
print(res2[i][pre_ids[i]])
print("res_sub:")
for i in range(8):
print(res2[i][pre_ids[i]] - res[i][pre_ids[i]])
print((res.numpy() - res2.numpy()).sum())

View File

@@ -1,5 +1,6 @@
import math import math
import time import time
import unittest
import numpy as np import numpy as np
import paddle import paddle
@@ -10,46 +11,70 @@ from fastdeploy.model_executor.layers.attention.ops import (
get_block_shape_and_split_kv_block, get_block_shape_and_split_kv_block,
) )
class TestTreeMask(unittest.TestCase):
def setUp(self):
paddle.seed(0) paddle.seed(0)
self.max_seq_len = 32768
self.encoder_max_partition_size = self.max_seq_len
self.max_partition_size = self.max_seq_len
max_seq_len = 32768 self.max_dec_len = 1024
encoder_max_partition_size = max_seq_len self.bsz = 64
max_partition_size = max_seq_len self.run_time = 10
self.warm_up = 2
self.block_size = 64
self.head_dim = 128
self.num_q_head = 20
self.num_kv_head = 4
self.dtype = "bfloat16"
max_dec_len = 1024 self.rope_3d = False
bsz = 64 self.use_neox_rotary_style = False
run_time = 10 self.CURRENT_Q = [None]
warm_up = 2 self.TOTAL_K = []
block_size = 64 self.TOTAL_V = []
head_dim = 128
num_q_head = 20
num_kv_head = 4
dtype = "bfloat16"
rope_3d = False # Initialize cache and block tables
use_neox_rotary_style = False block_num_per_seq = (self.max_seq_len + self.block_size - 1) // self.block_size
CURRENT_Q = [None] max_block_num = block_num_per_seq * self.bsz
TOTAL_K = [] cache_shape = (
TOTAL_V = [] max_block_num,
self.num_kv_head,
self.block_size,
self.head_dim,
)
self.cache_k = paddle.zeros(shape=cache_shape).astype(self.dtype)
self.cache_v = paddle.zeros(shape=cache_shape).astype(self.dtype)
def split_qkv(qkv, bsz, seq_len, num_q_head, num_kv_head, head_dim): self.block_tables = paddle.zeros(shape=(self.bsz, block_num_per_seq), dtype="int32")
# [token_num, (num_q_head + 2 * num_kv_head) * head_dim]
qkv = qkv.reshape([bsz, seq_len, -1, head_dim])
q = qkv[:, :, :num_q_head, :]
# [bsz, seq_len, num_q_head, head_dim]
CURRENT_Q[0] = q
# [bsz, seq_len, num_kv_head, head_dim] free_list = list(range(max_block_num - 1, -1, -1))
k = qkv[:, :, num_q_head : num_q_head + num_kv_head, :]
TOTAL_K.append(k)
# [bsz, seq_len, num_kv_head, head_dim] for i in range(self.bsz):
v = qkv[:, :, num_q_head + num_kv_head :, :] need_block_num = (self.max_seq_len + self.block_size - 1) // self.block_size
TOTAL_V.append(v) for j in range(need_block_num):
block_id = free_list.pop()
self.block_tables[i, j] = block_id
def tearDown(self):
self.CURRENT_Q = [None]
self.TOTAL_K = []
self.TOTAL_V = []
def get_padding_offset(bsz, seq_lens_this_time, seq_lens_decoder): def split_qkv(self, qkv, bsz, seq_len):
qkv = qkv.reshape([bsz, seq_len, -1, self.head_dim])
q = qkv[:, :, : self.num_q_head, :]
self.CURRENT_Q[0] = q
k = qkv[:, :, self.num_q_head : self.num_q_head + self.num_kv_head, :]
self.TOTAL_K.append(k)
v = qkv[:, :, self.num_q_head + self.num_kv_head :, :]
self.TOTAL_V.append(v)
def get_padding_offset(self, bsz, seq_lens_this_time, seq_lens_decoder):
batch_id_per_token = [] batch_id_per_token = []
cu_seqlens_q = paddle.zeros(shape=(bsz + 1), dtype="int32") cu_seqlens_q = paddle.zeros(shape=(bsz + 1), dtype="int32")
cu_seqlens_k = paddle.zeros(shape=(bsz + 1), dtype="int32") cu_seqlens_k = paddle.zeros(shape=(bsz + 1), dtype="int32")
@@ -66,32 +91,7 @@ def get_padding_offset(bsz, seq_lens_this_time, seq_lens_decoder):
cu_seqlens_k[i + 1] = cum_seq_len_k cu_seqlens_k[i + 1] = cum_seq_len_k
return paddle.to_tensor(batch_id_per_token, dtype="int32"), cu_seqlens_q, cu_seqlens_k return paddle.to_tensor(batch_id_per_token, dtype="int32"), cu_seqlens_q, cu_seqlens_k
def ref_attention(self, q, k, v, mask):
# block_table
block_num_per_seq = (max_seq_len + block_size - 1) // block_size
max_block_num = block_num_per_seq * bsz
cache_shape = (
max_block_num,
num_kv_head,
block_size,
head_dim,
)
cache_k = paddle.zeros(shape=cache_shape).astype(dtype)
cache_v = paddle.zeros(shape=cache_shape).astype(dtype)
block_tables = paddle.zeros(shape=(bsz, block_num_per_seq), dtype="int32")
free_list = list(range(max_block_num - 1, -1, -1))
for i in range(bsz):
need_block_num = (max_seq_len + block_size - 1) // block_size
for j in range(need_block_num):
block_id = free_list.pop()
block_tables[i, j] = block_id
def ref_attention(q, k, v, num_q_head, num_kv_head, head_dim, mask):
q = q.transpose([0, 2, 1, 3]) q = q.transpose([0, 2, 1, 3])
if len(k) > 1: if len(k) > 1:
k = paddle.concat(k, axis=1) k = paddle.concat(k, axis=1)
@@ -105,44 +105,44 @@ def ref_attention(q, k, v, num_q_head, num_kv_head, head_dim, mask):
v = v.transpose([0, 2, 1, 3]) v = v.transpose([0, 2, 1, 3])
total_len = k.shape[2] total_len = k.shape[2]
scores = q.reshape([bsz, num_kv_head, -1, head_dim]) @ k.transpose([0, 1, 3, 2]) * (1.0 / math.sqrt(head_dim)) scores = (
scores = scores.reshape([bsz, num_q_head, -1, total_len]) q.reshape([self.bsz, self.num_kv_head, -1, self.head_dim])
@ k.transpose([0, 1, 3, 2])
* (1.0 / math.sqrt(self.head_dim))
)
scores = scores.reshape([self.bsz, self.num_q_head, -1, total_len])
if mask is not None: if mask is not None:
if mask.ndim == 2: if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0) # [1,1,q_len,kv_len] mask = mask.unsqueeze(0).unsqueeze(0)
elif mask.ndim == 3: elif mask.ndim == 3:
mask = mask.unsqueeze(1) # [bsz,1,q_len,kv_len] mask = mask.unsqueeze(1)
scores = paddle.add(scores, mask) scores = paddle.add(scores, mask)
weights = F.softmax(scores, axis=-1) weights = F.softmax(scores, axis=-1)
o = weights.reshape([bsz, num_kv_head, -1, total_len]) @ v o = weights.reshape([self.bsz, self.num_kv_head, -1, total_len]) @ v
return o.reshape([bsz, num_q_head, -1, head_dim]).transpose([0, 2, 1, 3]).reshape([-1, num_q_head, head_dim]) return (
o.reshape([self.bsz, self.num_q_head, -1, self.head_dim])
.transpose([0, 2, 1, 3])
.reshape([-1, self.num_q_head, self.head_dim])
)
def run_append_c16_attention(self, q_len, kv_len, prefill=False, attn_mask=None):
def clear_param():
global CURRENT_Q, TOTAL_K, TOTAL_V
CURRENT_Q = [None]
TOTAL_K = []
TOTAL_V = []
def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None):
if prefill: if prefill:
seq_lens_enc = [ seq_lens_enc = [
q_len, q_len,
] * bsz ] * self.bsz
else: else:
seq_lens_enc = [ seq_lens_enc = [
0, 0,
] * bsz ] * self.bsz
seq_lens_dec = [ seq_lens_dec = [
kv_len, kv_len,
] * bsz ] * self.bsz
seq_lens_cur = [ seq_lens_cur = [
q_len, q_len,
] * bsz ] * self.bsz
token_num = sum(seq_lens_cur) token_num = sum(seq_lens_cur)
decoder_step_token_num = 1 if prefill else q_len decoder_step_token_num = 1 if prefill else q_len
@@ -150,39 +150,37 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None):
seq_lens_this_time = paddle.to_tensor(seq_lens_cur, "int32") seq_lens_this_time = paddle.to_tensor(seq_lens_cur, "int32")
seq_lens_decoder = paddle.to_tensor(seq_lens_dec, "int32") seq_lens_decoder = paddle.to_tensor(seq_lens_dec, "int32")
batch_id_per_token, cu_seqlens_q, cu_seqlens_k = get_padding_offset(bsz, seq_lens_this_time, seq_lens_decoder) batch_id_per_token, cu_seqlens_q, cu_seqlens_k = self.get_padding_offset(
self.bsz, seq_lens_this_time, seq_lens_decoder
)
# random data qkv_varlen_shape = [token_num, (self.num_q_head + 2 * self.num_kv_head) * self.head_dim]
qkv_varlen_shape = [token_num, (num_q_head + 2 * num_kv_head) * head_dim] rotary_embs_shape = [
2,
1,
self.max_seq_len,
1,
self.head_dim if self.use_neox_rotary_style else self.head_dim // 2,
]
rotary_embs_shape = [2, 1, max_seq_len, 1, head_dim if use_neox_rotary_style else head_dim // 2] qkv = paddle.randn(shape=qkv_varlen_shape).astype(self.dtype)
# qkv_bias_shape = [num_q_head + 2 * num_kv_head, head_dim] self.split_qkv(qkv, self.bsz, q_len)
qkv = paddle.randn(shape=qkv_varlen_shape).astype(dtype)
# save q, k, v for ref
split_qkv(qkv, bsz, q_len, num_q_head, num_kv_head, head_dim)
rotary_embs = paddle.randn(shape=rotary_embs_shape).astype("float32") rotary_embs = paddle.randn(shape=rotary_embs_shape).astype("float32")
rotary_embs[0, :, :, :, :] = 1 rotary_embs[0, :, :, :, :] = 1
rotary_embs[1, :, :, :, :] = 0 rotary_embs[1, :, :, :, :] = 0
# qkv_scale = None
# qkv_bias = None
cache_k_scale = None cache_k_scale = None
cache_v_scale = None cache_v_scale = None
cache_k_out_scale = None cache_k_out_scale = None
cache_v_out_scale = None cache_v_out_scale = None
# shift_bias = None
# smooth_weight = None
encoder_block_shape_q = 64 encoder_block_shape_q = 64
decoder_block_shape_q = 16 decoder_block_shape_q = 16
decode_max_tile_size = ( decode_max_tile_size = (
bsz self.bsz
* (decoder_step_token_num * (num_q_head // num_kv_head) + decoder_block_shape_q - 1) * (decoder_step_token_num * (self.num_q_head // self.num_kv_head) + decoder_block_shape_q - 1)
/ decoder_block_shape_q / decoder_block_shape_q
) )
decoder_batch_ids = paddle.full([int(decode_max_tile_size)], 0, dtype="int32") decoder_batch_ids = paddle.full([int(decode_max_tile_size)], 0, dtype="int32")
@@ -208,24 +206,24 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None):
max_len_tensor_cpu, max_len_tensor_cpu,
encoder_block_shape_q, encoder_block_shape_q,
decoder_block_shape_q, decoder_block_shape_q,
num_q_head // num_kv_head, self.num_q_head // self.num_kv_head,
block_size, self.block_size,
decoder_step_token_num, decoder_step_token_num,
) )
s_time = 0 s_time = 0
for i in range(run_time + warm_up): for i in range(self.run_time + self.warm_up):
if i == warm_up: if i == self.warm_up:
s_time = time.time() s_time = time.time()
out = append_attention( out = append_attention(
qkv, qkv,
cache_k, self.cache_k,
cache_v, self.cache_v,
seq_lens_encoder, seq_lens_encoder,
seq_lens_decoder, seq_lens_decoder,
seq_lens_this_time, seq_lens_this_time,
batch_id_per_token, batch_id_per_token,
cu_seqlens_q, cu_seqlens_q,
block_tables, self.block_tables,
encoder_batch_ids, encoder_batch_ids,
encoder_tile_ids_per_batch, encoder_tile_ids_per_batch,
encoder_num_blocks, encoder_num_blocks,
@@ -238,15 +236,15 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None):
max_len_tensor_cpu, max_len_tensor_cpu,
max_len_kv, max_len_kv,
rotary_embs, rotary_embs,
attn_mask, # attn_mask attn_mask,
None, None,
None, None,
cache_k_scale, cache_k_scale,
cache_v_scale, cache_v_scale,
cache_k_out_scale, cache_k_out_scale,
cache_v_out_scale, cache_v_out_scale,
None, # cache_k_zp None,
None, # cache_v_zp None,
None, None,
None, None,
None, None,
@@ -255,47 +253,45 @@ def test_append_c16_attention(q_len, kv_len, prefill=False, attn_mask=None):
None, None,
1e-6, 1e-6,
"bf16", "bf16",
"none", # cache_quant_type "none",
use_neox_rotary_style, self.use_neox_rotary_style,
rope_3d, self.rope_3d,
max_seq_len, self.max_seq_len,
0.0, 0.0,
0.0, 0.0,
-1.0, # out_linear_in_scale -1.0,
encoder_block_shape_q, # encoder_block_shape_q encoder_block_shape_q,
decoder_block_shape_q, # decoder_block_shape_q decoder_block_shape_q,
max_partition_size, # max_partition_size self.max_partition_size,
encoder_max_partition_size, # encoder_max_partition_size self.encoder_max_partition_size,
decoder_step_token_num, # speculate_max_draft_token_num decoder_step_token_num,
True, # causal True,
decoder_step_token_num > 1, # speculate_decoder decoder_step_token_num > 1,
) )
paddle.device.synchronize() paddle.device.synchronize()
e_time = time.time() e_time = time.time()
print(f"mean infer time: {np.mean((e_time - s_time) * 1000 / run_time):.2f}") print(f"mean infer time: {np.mean((e_time - s_time) * 1000 / self.run_time):.2f}")
return out[0].reshape([token_num, num_q_head, head_dim]) return out[0].reshape([token_num, self.num_q_head, self.head_dim])
def test_naive_speculative_decoding(self):
def test_naive_speculative_decoding(num_q_head, num_kv_head, head_dim):
prefill_len = 8192 prefill_len = 8192
dec_len_q = 5 dec_len_q = 5
total_len = prefill_len + dec_len_q total_len = prefill_len + dec_len_q
mask = paddle.tril(paddle.ones((bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) mask = paddle.tril(paddle.ones((self.bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len)
mask = paddle.where(mask == 1, paddle.zeros_like(mask), paddle.full_like(mask, fill_value=float("-inf"))) mask = paddle.where(mask == 1, paddle.zeros_like(mask), paddle.full_like(mask, fill_value=float("-inf")))
test_append_c16_attention(prefill_len, 0, True) self.run_append_c16_attention(prefill_len, 0, True)
dec_out = test_append_c16_attention(dec_len_q, prefill_len, False) dec_out = self.run_append_c16_attention(dec_len_q, prefill_len, False)
ref_out = ref_attention(CURRENT_Q[0], TOTAL_K, TOTAL_V, num_q_head, num_kv_head, head_dim, mask) ref_out = self.ref_attention(self.CURRENT_Q[0], self.TOTAL_K, self.TOTAL_V, mask)
np.testing.assert_allclose( np.testing.assert_allclose(
ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03 ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03
) )
def test_mask(self):
def test_mask(num_q_head, num_kv_head, head_dim):
prefill_len = 8192 prefill_len = 8192
dec_len_q = 5 dec_len_q = 5
total_len = prefill_len + dec_len_q total_len = prefill_len + dec_len_q
mask = paddle.tril(paddle.ones((bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) mask = paddle.tril(paddle.ones((self.bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len)
mask_ref = paddle.where(mask == 1, paddle.zeros_like(mask), paddle.full_like(mask, fill_value=float("-inf"))) mask_ref = paddle.where(mask == 1, paddle.zeros_like(mask), paddle.full_like(mask, fill_value=float("-inf")))
mask_append_attn = mask[:, :, prefill_len:] mask_append_attn = mask[:, :, prefill_len:]
@@ -305,28 +301,20 @@ def test_mask(num_q_head, num_kv_head, head_dim):
paddle.full_like(mask_append_attn, fill_value=True, dtype=bool), paddle.full_like(mask_append_attn, fill_value=True, dtype=bool),
) )
test_append_c16_attention(prefill_len, 0, True) self.run_append_c16_attention(prefill_len, 0, True)
dec_out = test_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn) dec_out = self.run_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn)
ref_out = ref_attention(CURRENT_Q[0], TOTAL_K, TOTAL_V, num_q_head, num_kv_head, head_dim, mask_ref) ref_out = self.ref_attention(self.CURRENT_Q[0], self.TOTAL_K, self.TOTAL_V, mask_ref)
np.testing.assert_allclose( np.testing.assert_allclose(
ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03 ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03
) )
def test_tree_mask(self):
def test_tree_mask(num_q_head, num_kv_head, head_dim):
# tree
# [N, N+1, N+1, N+2, N+2]
# N [0, -inf, -inf, -inf, -inf]
# N+1 [0, 0, -inf, -inf, -inf]
# N+1 [0, -inf, 0, -inf, -inf]
# N+2 [0, 0, -inf, 0, -inf]
# N+2 [0, -inf, 0, -inf, 0]
prefill_len = 8192 prefill_len = 8192
dec_len_q = 5 dec_len_q = 5
total_len = prefill_len + dec_len_q total_len = prefill_len + dec_len_q
mask = paddle.tril(paddle.ones((bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len) mask = paddle.tril(paddle.ones((self.bsz, dec_len_q, total_len), dtype="float32"), diagonal=prefill_len)
mask[:, 2, prefill_len + 1] = 0 mask[:, 2, prefill_len + 1] = 0
mask[:, 3, prefill_len + 2] = 0 mask[:, 3, prefill_len + 2] = 0
mask[:, 4, prefill_len + 1] = 0 mask[:, 4, prefill_len + 1] = 0
@@ -341,20 +329,13 @@ def test_tree_mask(num_q_head, num_kv_head, head_dim):
paddle.full_like(mask_append_attn, fill_value=True, dtype=bool), paddle.full_like(mask_append_attn, fill_value=True, dtype=bool),
) )
test_append_c16_attention(prefill_len, 0, True) self.run_append_c16_attention(prefill_len, 0, True)
dec_out = test_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn) dec_out = self.run_append_c16_attention(dec_len_q, prefill_len, False, mask_append_attn)
ref_out = ref_attention(CURRENT_Q[0], TOTAL_K, TOTAL_V, num_q_head, num_kv_head, head_dim, mask_ref) ref_out = self.ref_attention(self.CURRENT_Q[0], self.TOTAL_K, self.TOTAL_V, mask_ref)
np.testing.assert_allclose( np.testing.assert_allclose(
ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03 ref_out.astype("float32").numpy(), dec_out.astype("float32").numpy(), rtol=1e-03, atol=5e-03
) )
if __name__ == "__main__": if __name__ == "__main__":
unittest.main()
test_naive_speculative_decoding(num_q_head, num_kv_head, head_dim)
clear_param()
test_mask(num_q_head, num_kv_head, head_dim)
clear_param()
test_tree_mask(num_q_head, num_kv_head, head_dim)

View File

@@ -12,17 +12,47 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest
import numpy as np import numpy as np
import paddle import paddle
from fastdeploy.model_executor.ops.gpu import w4afp8_gemm, w4afp8_gemm_weight_convert from fastdeploy.model_executor.ops.gpu import w4afp8_gemm, w4afp8_gemm_weight_convert
def w4afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_dequant_scale, BATCH, N): class TestW4AFP8GEMM(unittest.TestCase):
def setUp(self):
paddle.seed(0)
self.tokens_per_group = 256
self.N = 256
self.K = 256
self.BATCH = 1
self.TokenPadding = 0
tokens = [self.tokens_per_group] * self.BATCH
self.tokens_perfix_sum = np.cumsum(tokens)
self.tokens = paddle.to_tensor(tokens, dtype="int64")
self.tokens_perfix_sum = paddle.to_tensor(self.tokens_perfix_sum, dtype="int64")
self.all_tokens = int(self.tokens.sum())
self.input_fp8 = paddle.randn([self.all_tokens, self.K], dtype="bfloat16").astype(paddle.float8_e4m3fn)
self.input_bf16 = self.input_fp8.astype("bfloat16")
self.weight = paddle.randn([self.BATCH, self.N, self.K], dtype="bfloat16") / 10
self.weight_scale = 7 / self.weight.abs().max(axis=-1).reshape([self.BATCH, self.N, 1])
self.weight_quant = (self.weight * self.weight_scale).astype("int") + 7
self.weight_quant = paddle.clip(self.weight_quant, 0, 14)
self.weight_quant = self.weight_quant.astype("bfloat16")
self.weight_dequant_scale = 1 / self.weight_scale.astype("float32")
self.input_row_sum = self.input_bf16.sum(axis=1) * -7 / 512
self.max_tokens = int(self.tokens.max())
def w4afp8_gemm_naive(self, input_bf16, weight_quant, tokens, weight_dequant_scale):
all_tokens = int(tokens.sum()) all_tokens = int(tokens.sum())
out = paddle.zeros([all_tokens, N], dtype="bfloat16") out = paddle.zeros([all_tokens, self.N], dtype="bfloat16")
pre_fix_token = 0 pre_fix_token = 0
for i in range(BATCH): for i in range(self.BATCH):
input = input_bf16[pre_fix_token : pre_fix_token + tokens[i], :] input = input_bf16[pre_fix_token : pre_fix_token + tokens[i], :]
weight = (weight_quant[i] - 7.0) * weight_dequant_scale[i] weight = (weight_quant[i] - 7.0) * weight_dequant_scale[i]
out_i = paddle.matmul(input, weight.astype("bfloat16"), transpose_y=True) out_i = paddle.matmul(input, weight.astype("bfloat16"), transpose_y=True)
@@ -30,74 +60,49 @@ def w4afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_dequant_scale, BA
pre_fix_token += tokens[i] pre_fix_token += tokens[i]
return out return out
def permute_scale(self, weight_scale):
def permute_scale(weight_scale): weight_scale = weight_scale.reshape([self.BATCH, self.N])
weight_scale = weight_scale.reshape([BATCH, N])
temp = paddle.zeros([16]) temp = paddle.zeros([16])
for b in range(BATCH): for b in range(self.BATCH):
for n in range(0, N, 16): for n in range(0, self.N, 16):
temp[:] = weight_scale[b, n : n + 16] temp[:] = weight_scale[b, n : n + 16]
for j in range(0, 16, 2): for j in range(0, 16, 2):
weight_scale[b, n + j] = temp[j // 2] weight_scale[b, n + j] = temp[j // 2]
weight_scale[b, n + j + 1] = temp[j // 2 + 8] weight_scale[b, n + j + 1] = temp[j // 2 + 8]
return weight_scale return weight_scale
def test_w4afp8_gemm(self):
out_naive = self.w4afp8_gemm_naive(self.input_bf16, self.weight_quant, self.tokens, self.weight_dequant_scale)
paddle.seed(0) weight_dequant_scale = paddle.to_tensor(self.permute_scale(self.weight_dequant_scale) * 512)
tokens_per_group = 256 weight_int4 = w4afp8_gemm_weight_convert(self.weight_quant.astype("uint8").cpu())
N = 256
K = 256
BATCH = 1
TokenPadding = 0
tokens = [tokens_per_group] * BATCH if self.TokenPadding == 0:
tokens_perfix_sum = np.cumsum(tokens)
tokens = paddle.to_tensor(tokens, dtype="int64")
tokens_perfix_sum = paddle.to_tensor(tokens_perfix_sum, dtype="int64")
all_tokens = int(tokens.sum())
input_fp8 = paddle.randn([all_tokens, K], dtype="bfloat16").astype(paddle.float8_e4m3fn)
input_bf16 = input_fp8.astype("bfloat16")
weight = paddle.randn([BATCH, N, K], dtype="bfloat16") / 10
weight_scale = 7 / weight.abs().max(axis=-1).reshape([BATCH, N, 1])
weight_quant = (weight * weight_scale).astype("int") + 7
weight_quant = paddle.clip(weight_quant, 0, 14)
weight_quant = weight_quant.astype("bfloat16")
weight_dequant_scale = 1 / weight_scale.astype("float32")
input_row_sum = input_bf16.sum(axis=1) * -7 / 512
max_tokens = int(tokens.max())
out_naive = w4afp8_gemm_naive(input_bf16, weight_quant, tokens, weight_dequant_scale, BATCH, N)
weight_dequant_scale = paddle.to_tensor(permute_scale(weight_dequant_scale) * 512)
weight_int4 = w4afp8_gemm_weight_convert(weight_quant.astype("uint8").cpu())
if TokenPadding == 0:
out_cuda = w4afp8_gemm( out_cuda = w4afp8_gemm(
input_fp8, self.input_fp8,
weight_int4.cuda(), weight_int4.cuda(),
tokens_perfix_sum, self.tokens_perfix_sum,
input_row_sum.astype("float32"), self.input_row_sum.astype("float32"),
weight_dequant_scale.astype("float32"), weight_dequant_scale.astype("float32"),
int(TokenPadding), int(self.TokenPadding),
max_tokens, self.max_tokens,
True, True,
) )
else: else:
out_cuda = w4afp8_gemm( out_cuda = w4afp8_gemm(
input_fp8, self.input_fp8,
weight_int4.cuda(), weight_int4.cuda(),
tokens, self.tokens,
input_row_sum.astype("float32"), self.input_row_sum.astype("float32"),
weight_dequant_scale.astype("float32"), weight_dequant_scale.astype("float32"),
int(TokenPadding), int(self.TokenPadding),
max_tokens, self.max_tokens,
True, True,
) )
gap = (out_cuda - out_naive).abs() gap = (out_cuda - out_naive).abs()
assert float(gap.mean()) < 0.07 self.assertLess(float(gap.mean()), 0.07)
if __name__ == "__main__":
unittest.main()