[CVCUDA] Update CV-CUDA to v0.2.1, add vision processor C++ tutorial (#1678)

* update cvcuda 0.2.0 -> 0.2.1

* add cpp tutorials demo

* fix reviewed problem
This commit is contained in:
guxukai
2023-03-24 16:57:35 +08:00
committed by GitHub
parent f0235a4c4e
commit 631f94d276
17 changed files with 170 additions and 19 deletions

View File

@@ -0,0 +1,78 @@
#include "fastdeploy/vision.h"
#include "fastdeploy/vision/common/processors/manager.h"
#include "fastdeploy/vision/common/processors/transform.h"
namespace fd = fastdeploy;
// Define our custom processor
class CustomPreprocessor : public fd::vision::ProcessorManager {
public:
explicit CustomPreprocessor(){};
~CustomPreprocessor(){};
virtual bool Apply(fd::vision::FDMatBatch* image_batch,
std::vector<fd::FDTensor>* outputs);
private:
// Create op
int width = 160;
int height = 160;
std::shared_ptr<fd::vision::Resize> resize_op =
std::make_shared<fd::vision::Resize>(width, height, -1.0, -1.0, 1, false);
std::shared_ptr<fd::vision::CenterCrop> crop =
std::make_shared<fd::vision::CenterCrop>(50, 50);
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
std::vector<float> std = {0.229f, 0.224f, 0.225f};
std::shared_ptr<fd::vision::Normalize> normalize =
std::make_shared<fd::vision::Normalize>(mean, std);
};
// Implement our custom processor's Apply() method
bool CustomPreprocessor::Apply(fd::vision::FDMatBatch* image_batch,
std::vector<fd::FDTensor>* outputs) {
// Use op to transform the images
bool resize_ret = (*resize_op)(&(image_batch->mats->at(0)));
bool crop_ret = (*crop)(image_batch);
bool normalize_ret = (*normalize)(image_batch);
outputs->resize(1);
fd::FDTensor* tensor = image_batch->Tensor();
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
tensor->Data(), tensor->device,
tensor->device_id);
return true;
}
int main(int argc, char* argv[]) {
if (argc < 2) {
std::cout << "Usage: ./preprocessor_demo path/to/image run_option, "
"e.g ././preprocessor_demo ./test.jpeg 0"
<< std::endl;
std::cout << "Run_option 0: OpenCV; 1: CV-CUDA " << std::endl;
return -1;
}
// Prepare input images
auto im = cv::imread(argv[1]);
std::vector<cv::Mat> images = {im, im};
std::vector<fd::vision::FDMat> mats = fd::vision::WrapMat(images);
std::vector<fd::FDTensor> outputs;
// CustomPreprocessor processor;
CustomPreprocessor processor = CustomPreprocessor();
// Use CV-CUDA if parameter passed and detected
if (std::atoi(argv[2]) == 1) {
processor.UseCuda(true, 0);
}
// Run the processor
bool ret = processor.Run(&mats, &outputs);
// Print output
for (int i = 0; i < outputs.size(); i++) {
outputs[i].PrintInfo("out");
}
return 0;
}