[CVCUDA] CMake integration, vison processor CV-CUDA integration, PaddleClas support CV-CUDA (#1074)

* cvcuda resize

* cvcuda center crop

* cvcuda resize

* add a fdtensor in fdmat

* get cv mat and get tensor support gpu

* paddleclas cvcuda preprocessor

* fix compile err

* fix windows compile error

* rename reused to cached

* address comment

* remove debug code

* add comment

* add manager run

* use cuda and cuda used

* use cv cuda doc

* address comment

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
Wang Xinyu
2023-01-30 09:33:49 +08:00
committed by GitHub
parent 0c735e9c0b
commit 62e051e21d
26 changed files with 814 additions and 216 deletions

View File

@@ -18,76 +18,102 @@ void BindPaddleClas(pybind11::module& m) {
pybind11::class_<vision::classification::PaddleClasPreprocessor>(
m, "PaddleClasPreprocessor")
.def(pybind11::init<std::string>())
.def("run", [](vision::classification::PaddleClasPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
}
if (!self.WithGpu()) {
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
}
return outputs;
})
.def("use_gpu", [](vision::classification::PaddleClasPreprocessor& self, int gpu_id = -1) {
self.UseGpu(gpu_id);
})
.def("disable_normalize", [](vision::classification::PaddleClasPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute", [](vision::classification::PaddleClasPreprocessor& self) {
self.DisablePermute();
});
.def("run",
[](vision::classification::PaddleClasPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"PaddleClasPreprocessor.");
}
if (!self.CudaUsed()) {
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
}
return outputs;
})
.def("use_cuda",
[](vision::classification::PaddleClasPreprocessor& self,
bool enable_cv_cuda = false,
int gpu_id = -1) { self.UseCuda(enable_cv_cuda, gpu_id); })
.def("disable_normalize",
[](vision::classification::PaddleClasPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute",
[](vision::classification::PaddleClasPreprocessor& self) {
self.DisablePermute();
});
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
m, "PaddleClasPostprocessor")
.def(pybind11::init<int>())
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<FDTensor>& inputs) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in PaddleClasPostprocessor.");
}
return results;
})
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<pybind11::array>& input_array) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in PaddleClasPostprocessor.");
}
return results;
})
.def_property("topk", &vision::classification::PaddleClasPostprocessor::GetTopk, &vision::classification::PaddleClasPostprocessor::SetTopk);
.def("run",
[](vision::classification::PaddleClasPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PaddleClasPostprocessor.");
}
return results;
})
.def("run",
[](vision::classification::PaddleClasPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PaddleClasPostprocessor.");
}
return results;
})
.def_property("topk",
&vision::classification::PaddleClasPostprocessor::GetTopk,
&vision::classification::PaddleClasPostprocessor::SetTopk);
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
m, "PaddleClasModel")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("clone", [](vision::classification::PaddleClasModel& self) {
return self.Clone();
})
.def("predict", [](vision::classification::PaddleClasModel& self, pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data);
vision::ClassifyResult result;
self.Predict(im, &result);
return result;
})
.def("batch_predict", [](vision::classification::PaddleClasModel& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::classification::PaddleClasModel::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::classification::PaddleClasModel::GetPostprocessor);
.def("clone",
[](vision::classification::PaddleClasModel& self) {
return self.Clone();
})
.def("predict",
[](vision::classification::PaddleClasModel& self,
pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data);
vision::ClassifyResult result;
self.Predict(im, &result);
return result;
})
.def("batch_predict",
[](vision::classification::PaddleClasModel& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly(
"preprocessor",
&vision::classification::PaddleClasModel::GetPreprocessor)
.def_property_readonly(
"postprocessor",
&vision::classification::PaddleClasModel::GetPostprocessor);
}
} // namespace fastdeploy