mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-24 17:10:35 +08:00
[CVCUDA] CMake integration, vison processor CV-CUDA integration, PaddleClas support CV-CUDA (#1074)
* cvcuda resize * cvcuda center crop * cvcuda resize * add a fdtensor in fdmat * get cv mat and get tensor support gpu * paddleclas cvcuda preprocessor * fix compile err * fix windows compile error * rename reused to cached * address comment * remove debug code * add comment * add manager run * use cuda and cuda used * use cv cuda doc * address comment --------- Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -18,76 +18,102 @@ void BindPaddleClas(pybind11::module& m) {
|
||||
pybind11::class_<vision::classification::PaddleClasPreprocessor>(
|
||||
m, "PaddleClasPreprocessor")
|
||||
.def(pybind11::init<std::string>())
|
||||
.def("run", [](vision::classification::PaddleClasPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
|
||||
}
|
||||
if (!self.WithGpu()) {
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
}
|
||||
return outputs;
|
||||
})
|
||||
.def("use_gpu", [](vision::classification::PaddleClasPreprocessor& self, int gpu_id = -1) {
|
||||
self.UseGpu(gpu_id);
|
||||
})
|
||||
.def("disable_normalize", [](vision::classification::PaddleClasPreprocessor& self) {
|
||||
self.DisableNormalize();
|
||||
})
|
||||
.def("disable_permute", [](vision::classification::PaddleClasPreprocessor& self) {
|
||||
self.DisablePermute();
|
||||
});
|
||||
.def("run",
|
||||
[](vision::classification::PaddleClasPreprocessor& self,
|
||||
std::vector<pybind11::array>& im_list) {
|
||||
std::vector<vision::FDMat> images;
|
||||
for (size_t i = 0; i < im_list.size(); ++i) {
|
||||
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
||||
}
|
||||
std::vector<FDTensor> outputs;
|
||||
if (!self.Run(&images, &outputs)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to preprocess the input data in "
|
||||
"PaddleClasPreprocessor.");
|
||||
}
|
||||
if (!self.CudaUsed()) {
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
outputs[i].StopSharing();
|
||||
}
|
||||
}
|
||||
return outputs;
|
||||
})
|
||||
.def("use_cuda",
|
||||
[](vision::classification::PaddleClasPreprocessor& self,
|
||||
bool enable_cv_cuda = false,
|
||||
int gpu_id = -1) { self.UseCuda(enable_cv_cuda, gpu_id); })
|
||||
.def("disable_normalize",
|
||||
[](vision::classification::PaddleClasPreprocessor& self) {
|
||||
self.DisableNormalize();
|
||||
})
|
||||
.def("disable_permute",
|
||||
[](vision::classification::PaddleClasPreprocessor& self) {
|
||||
self.DisablePermute();
|
||||
});
|
||||
|
||||
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
|
||||
m, "PaddleClasPostprocessor")
|
||||
.def(pybind11::init<int>())
|
||||
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<FDTensor>& inputs) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
if (!self.Run(inputs, &results)) {
|
||||
throw std::runtime_error("Failed to postprocess the runtime result in PaddleClasPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<pybind11::array>& input_array) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results)) {
|
||||
throw std::runtime_error("Failed to postprocess the runtime result in PaddleClasPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def_property("topk", &vision::classification::PaddleClasPostprocessor::GetTopk, &vision::classification::PaddleClasPostprocessor::SetTopk);
|
||||
.def("run",
|
||||
[](vision::classification::PaddleClasPostprocessor& self,
|
||||
std::vector<FDTensor>& inputs) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
if (!self.Run(inputs, &results)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to postprocess the runtime result in "
|
||||
"PaddleClasPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def("run",
|
||||
[](vision::classification::PaddleClasPostprocessor& self,
|
||||
std::vector<pybind11::array>& input_array) {
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
std::vector<FDTensor> inputs;
|
||||
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
||||
if (!self.Run(inputs, &results)) {
|
||||
throw std::runtime_error(
|
||||
"Failed to postprocess the runtime result in "
|
||||
"PaddleClasPostprocessor.");
|
||||
}
|
||||
return results;
|
||||
})
|
||||
.def_property("topk",
|
||||
&vision::classification::PaddleClasPostprocessor::GetTopk,
|
||||
&vision::classification::PaddleClasPostprocessor::SetTopk);
|
||||
|
||||
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
|
||||
m, "PaddleClasModel")
|
||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||
ModelFormat>())
|
||||
.def("clone", [](vision::classification::PaddleClasModel& self) {
|
||||
return self.Clone();
|
||||
})
|
||||
.def("predict", [](vision::classification::PaddleClasModel& self, pybind11::array& data) {
|
||||
cv::Mat im = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult result;
|
||||
self.Predict(im, &result);
|
||||
return result;
|
||||
})
|
||||
.def("batch_predict", [](vision::classification::PaddleClasModel& self, std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
self.BatchPredict(images, &results);
|
||||
return results;
|
||||
})
|
||||
.def_property_readonly("preprocessor", &vision::classification::PaddleClasModel::GetPreprocessor)
|
||||
.def_property_readonly("postprocessor", &vision::classification::PaddleClasModel::GetPostprocessor);
|
||||
.def("clone",
|
||||
[](vision::classification::PaddleClasModel& self) {
|
||||
return self.Clone();
|
||||
})
|
||||
.def("predict",
|
||||
[](vision::classification::PaddleClasModel& self,
|
||||
pybind11::array& data) {
|
||||
cv::Mat im = PyArrayToCvMat(data);
|
||||
vision::ClassifyResult result;
|
||||
self.Predict(im, &result);
|
||||
return result;
|
||||
})
|
||||
.def("batch_predict",
|
||||
[](vision::classification::PaddleClasModel& self,
|
||||
std::vector<pybind11::array>& data) {
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < data.size(); ++i) {
|
||||
images.push_back(PyArrayToCvMat(data[i]));
|
||||
}
|
||||
std::vector<vision::ClassifyResult> results;
|
||||
self.BatchPredict(images, &results);
|
||||
return results;
|
||||
})
|
||||
.def_property_readonly(
|
||||
"preprocessor",
|
||||
&vision::classification::PaddleClasModel::GetPreprocessor)
|
||||
.def_property_readonly(
|
||||
"postprocessor",
|
||||
&vision::classification::PaddleClasModel::GetPostprocessor);
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
||||
Reference in New Issue
Block a user