mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Update ppseg with eigen functions (#238)
* Update ppseg backend support type * Update ppseg preprocess if condition * Update README.md * Update README.md * Update README.md * Update ppseg with eigen functions * Delete old argmax function * Update README.md * Delete apply_softmax in ppseg example demo * Update ppseg code with createFromTensor function * Delete FDTensor2CVMat function * Update README.md * Update README.md * Update README.md * Update README.md * Update ppseg model.cc with transpose&&softmax in place convert * Update segmentation_result.md * Update model.cc * Update README.md * Update README.md Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -1,59 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/segmentation/ppseg/model.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace segmentation {
|
||||
|
||||
void FDTensor2FP32CVMat(cv::Mat& mat, FDTensor& infer_result,
|
||||
bool contain_score_map) {
|
||||
// output with argmax channel is 1
|
||||
int channel = 1;
|
||||
int height = infer_result.shape[1];
|
||||
int width = infer_result.shape[2];
|
||||
|
||||
if (contain_score_map) {
|
||||
// output without argmax and convent to NHWC
|
||||
channel = infer_result.shape[3];
|
||||
}
|
||||
// create FP32 cvmat
|
||||
if (infer_result.dtype == FDDataType::INT64) {
|
||||
FDWARNING << "The PaddleSeg model is exported with argmax. Inference "
|
||||
"result type is " +
|
||||
Str(infer_result.dtype) +
|
||||
". If you want the edge of segmentation image more "
|
||||
"smoother. Please export model with --without_argmax "
|
||||
"--with_softmax."
|
||||
<< std::endl;
|
||||
int64_t chw = channel * height * width;
|
||||
int64_t* infer_result_buffer = static_cast<int64_t*>(infer_result.Data());
|
||||
std::vector<float_t> float_result_buffer(chw);
|
||||
mat = cv::Mat(height, width, CV_32FC(channel));
|
||||
int index = 0;
|
||||
for (int i = 0; i < height; i++) {
|
||||
for (int j = 0; j < width; j++) {
|
||||
mat.at<float_t>(i, j) =
|
||||
static_cast<float_t>(infer_result_buffer[index++]);
|
||||
}
|
||||
}
|
||||
} else if (infer_result.dtype == FDDataType::FP32) {
|
||||
mat = cv::Mat(height, width, CV_32FC(channel), infer_result.Data());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace segmentation
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -14,7 +14,7 @@ PaddleSegModel::PaddleSegModel(const std::string& model_file,
|
||||
const ModelFormat& model_format) {
|
||||
config_file_ = config_file;
|
||||
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::TRT};
|
||||
valid_gpu_backends = {Backend::PDINFER};
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
runtime_option.model_file = model_file;
|
||||
@@ -79,12 +79,32 @@ bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
|
||||
}
|
||||
processors_.push_back(std::make_shared<HWC2CHW>());
|
||||
}
|
||||
if (cfg["Deploy"]["output_op"]) {
|
||||
std::string output_op = cfg["Deploy"]["output_op"].as<std::string>();
|
||||
if (output_op == "softmax") {
|
||||
is_with_softmax = true;
|
||||
is_with_argmax = false;
|
||||
} else if (output_op == "argmax") {
|
||||
is_with_softmax = false;
|
||||
is_with_argmax = true;
|
||||
} else if (output_op == "none") {
|
||||
is_with_softmax = false;
|
||||
is_with_argmax = false;
|
||||
} else {
|
||||
FDERROR << "Unexcepted output_op operator in deploy.yml: " << output_op
|
||||
<< "." << std::endl;
|
||||
}
|
||||
}
|
||||
if (is_with_argmax) {
|
||||
FDWARNING << "The PaddleSeg model is exported with argmax."
|
||||
<< " If you want the edge of segmentation image more"
|
||||
<< " smoother. Please export model with parameters"
|
||||
<< " --output_op softmax." << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PaddleSegModel::Preprocess(
|
||||
Mat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<int, 2>>* im_info) {
|
||||
bool PaddleSegModel::Preprocess(Mat* mat, FDTensor* output) {
|
||||
for (size_t i = 0; i < processors_.size(); ++i) {
|
||||
if (processors_[i]->Name().compare("Resize") == 0) {
|
||||
auto processor = dynamic_cast<Resize*>(processors_[i].get());
|
||||
@@ -105,10 +125,6 @@ bool PaddleSegModel::Preprocess(
|
||||
}
|
||||
}
|
||||
|
||||
// Record output shape of preprocessed image
|
||||
(*im_info)["output_shape"] = {static_cast<int>(mat->Height()),
|
||||
static_cast<int>(mat->Width())};
|
||||
|
||||
mat->ShareWithTensor(output);
|
||||
output->shape.insert(output->shape.begin(), 1);
|
||||
output->name = InputInfoOfRuntime(0).name;
|
||||
@@ -116,13 +132,15 @@ bool PaddleSegModel::Preprocess(
|
||||
}
|
||||
|
||||
bool PaddleSegModel::Postprocess(
|
||||
FDTensor& infer_result, SegmentationResult* result,
|
||||
std::map<std::string, std::array<int, 2>>* im_info) {
|
||||
FDTensor* infer_result, SegmentationResult* result,
|
||||
const std::map<std::string, std::array<int, 2>>& im_info) {
|
||||
// PaddleSeg has three types of inference output:
|
||||
// 1. output with argmax and without softmax. 3-D matrix CHW, Channel
|
||||
// 1. output with argmax and without softmax. 3-D matrix N(C)HW, Channel
|
||||
// always 1, the element in matrix is classified label_id INT64 Type.
|
||||
// 2. output without argmax and without softmax. 4-D matrix NCHW, N always
|
||||
// 1, Channel is the num of classes. The element is the logits of classes
|
||||
// 2. output without argmax and without softmax. 4-D matrix NCHW, N(batch)
|
||||
// always
|
||||
// 1(only support batch size 1), Channel is the num of classes. The
|
||||
// element is the logits of classes
|
||||
// FP32
|
||||
// 3. output without argmax and with softmax. 4-D matrix NCHW, the result
|
||||
// of 2 with softmax layer
|
||||
@@ -130,59 +148,117 @@ bool PaddleSegModel::Postprocess(
|
||||
// 1. label_map
|
||||
// 2. score_map(optional)
|
||||
// 3. shape: 2-D HW
|
||||
FDASSERT(infer_result.dtype == FDDataType::INT64 ||
|
||||
infer_result.dtype == FDDataType::FP32,
|
||||
"Require the data type of output is int64 or fp32, but now it's %s.",
|
||||
Str(infer_result.dtype).c_str());
|
||||
FDASSERT(infer_result->dtype == FDDataType::INT64 ||
|
||||
infer_result->dtype == FDDataType::FP32 ||
|
||||
infer_result->dtype == FDDataType::INT32,
|
||||
"Require the data type of output is int64, fp32 or int32, but now "
|
||||
"it's %s.",
|
||||
Str(infer_result->dtype).c_str());
|
||||
result->Clear();
|
||||
FDASSERT(infer_result->shape[0] == 1, "Only support batch size = 1.");
|
||||
|
||||
if (infer_result.shape.size() == 4) {
|
||||
FDASSERT(infer_result.shape[0] == 1, "Only support batch size = 1.");
|
||||
int64_t batch = infer_result->shape[0];
|
||||
int64_t channel = 0;
|
||||
int64_t height = 0;
|
||||
int64_t width = 0;
|
||||
|
||||
if (is_with_argmax) {
|
||||
channel = 1;
|
||||
height = infer_result->shape[1];
|
||||
width = infer_result->shape[2];
|
||||
} else {
|
||||
channel = infer_result->shape[1];
|
||||
height = infer_result->shape[2];
|
||||
width = infer_result->shape[3];
|
||||
}
|
||||
int64_t chw = channel * height * width;
|
||||
|
||||
if (!is_with_softmax && apply_softmax) {
|
||||
Softmax(*infer_result, infer_result, 1);
|
||||
}
|
||||
|
||||
if (!is_with_argmax) {
|
||||
// output without argmax
|
||||
result->contain_score_map = true;
|
||||
utils::NCHW2NHWC<float_t>(infer_result);
|
||||
|
||||
std::vector<int64_t> dim{0, 2, 3, 1};
|
||||
Transpose(*infer_result, infer_result, dim);
|
||||
}
|
||||
// batch always 1, so ignore
|
||||
infer_result->shape = {height, width, channel};
|
||||
|
||||
// for resize mat below
|
||||
FDTensor new_infer_result;
|
||||
Mat* mat = nullptr;
|
||||
std::vector<float_t>* fp32_result_buffer = nullptr;
|
||||
if (is_resized) {
|
||||
cv::Mat temp_mat;
|
||||
FDTensor2FP32CVMat(temp_mat, infer_result, result->contain_score_map);
|
||||
|
||||
// original image shape
|
||||
auto iter_ipt = (*im_info).find("input_shape");
|
||||
FDASSERT(iter_ipt != im_info->end(),
|
||||
if (infer_result->dtype == FDDataType::INT64 ||
|
||||
infer_result->dtype == FDDataType::INT32) {
|
||||
if (infer_result->dtype == FDDataType::INT64) {
|
||||
int64_t* infer_result_buffer =
|
||||
static_cast<int64_t*>(infer_result->Data());
|
||||
// cv::resize don't support `CV_8S` or `CV_32S`
|
||||
// refer to https://github.com/opencv/opencv/issues/20991
|
||||
// https://github.com/opencv/opencv/issues/7862
|
||||
fp32_result_buffer = new std::vector<float_t>(
|
||||
infer_result_buffer, infer_result_buffer + chw);
|
||||
}
|
||||
if (infer_result->dtype == FDDataType::INT32) {
|
||||
int32_t* infer_result_buffer =
|
||||
static_cast<int32_t*>(infer_result->Data());
|
||||
// cv::resize don't support `CV_8S` or `CV_32S`
|
||||
// refer to https://github.com/opencv/opencv/issues/20991
|
||||
// https://github.com/opencv/opencv/issues/7862
|
||||
fp32_result_buffer = new std::vector<float_t>(
|
||||
infer_result_buffer, infer_result_buffer + chw);
|
||||
}
|
||||
infer_result->Resize(infer_result->shape, FDDataType::FP32);
|
||||
infer_result->SetExternalData(
|
||||
infer_result->shape, FDDataType::FP32,
|
||||
static_cast<void*>(fp32_result_buffer->data()));
|
||||
}
|
||||
auto iter_ipt = im_info.find("input_shape");
|
||||
FDASSERT(iter_ipt != im_info.end(),
|
||||
"Cannot find input_shape from im_info.");
|
||||
int ipt_h = iter_ipt->second[0];
|
||||
int ipt_w = iter_ipt->second[1];
|
||||
|
||||
mat = new Mat(temp_mat);
|
||||
|
||||
Resize::Run(mat, ipt_w, ipt_h, -1, -1, 1);
|
||||
mat = new Mat(CreateFromTensor(*infer_result));
|
||||
Resize::Run(mat, ipt_w, ipt_h, -1.0f, -1.0f, 1);
|
||||
mat->ShareWithTensor(&new_infer_result);
|
||||
new_infer_result.shape.insert(new_infer_result.shape.begin(), 1);
|
||||
result->shape = new_infer_result.shape;
|
||||
} else {
|
||||
result->shape = infer_result.shape;
|
||||
result->shape = infer_result->shape;
|
||||
}
|
||||
// output shape is 2-D HW layout, so out_num = H * W
|
||||
int out_num =
|
||||
std::accumulate(result->shape.begin(), result->shape.begin() + 3, 1,
|
||||
std::accumulate(result->shape.begin(), result->shape.begin() + 2, 1,
|
||||
std::multiplies<int>());
|
||||
// NCHW remove N or CHW remove C
|
||||
result->shape.erase(result->shape.begin());
|
||||
result->Resize(out_num);
|
||||
if (result->contain_score_map) {
|
||||
// output with label_map and score_map
|
||||
float_t* infer_result_buffer = nullptr;
|
||||
if (is_resized) {
|
||||
infer_result_buffer = static_cast<float_t*>(new_infer_result.Data());
|
||||
} else {
|
||||
infer_result_buffer = static_cast<float_t*>(infer_result.Data());
|
||||
}
|
||||
int32_t* argmax_infer_result_buffer = nullptr;
|
||||
float_t* score_infer_result_buffer = nullptr;
|
||||
FDTensor argmax_infer_result;
|
||||
FDTensor max_score_result;
|
||||
std::vector<int64_t> reduce_dim{-1};
|
||||
// argmax
|
||||
utils::ArgmaxScoreMap(infer_result_buffer, result, with_softmax);
|
||||
result->shape.erase(result->shape.begin() + 2);
|
||||
if (is_resized) {
|
||||
ArgMax(new_infer_result, &argmax_infer_result, -1, FDDataType::INT32);
|
||||
Max(new_infer_result, &max_score_result, reduce_dim);
|
||||
} else {
|
||||
ArgMax(*infer_result, &argmax_infer_result, -1, FDDataType::INT32);
|
||||
Max(*infer_result, &max_score_result, reduce_dim);
|
||||
}
|
||||
argmax_infer_result_buffer =
|
||||
static_cast<int32_t*>(argmax_infer_result.Data());
|
||||
score_infer_result_buffer = static_cast<float_t*>(max_score_result.Data());
|
||||
for (int i = 0; i < out_num; i++) {
|
||||
result->label_map[i] =
|
||||
static_cast<uint8_t>(*(argmax_infer_result_buffer + i));
|
||||
}
|
||||
std::memcpy(result->score_map.data(), score_infer_result_buffer,
|
||||
out_num * sizeof(float_t));
|
||||
|
||||
} else {
|
||||
// output only with label_map
|
||||
if (is_resized) {
|
||||
@@ -192,13 +268,27 @@ bool PaddleSegModel::Postprocess(
|
||||
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
|
||||
}
|
||||
} else {
|
||||
const int64_t* infer_result_buffer =
|
||||
reinterpret_cast<const int64_t*>(infer_result.Data());
|
||||
for (int i = 0; i < out_num; i++) {
|
||||
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
|
||||
if (infer_result->dtype == FDDataType::INT64) {
|
||||
const int64_t* infer_result_buffer =
|
||||
static_cast<const int64_t*>(infer_result->Data());
|
||||
for (int i = 0; i < out_num; i++) {
|
||||
result->label_map[i] =
|
||||
static_cast<uint8_t>(*(infer_result_buffer + i));
|
||||
}
|
||||
}
|
||||
if (infer_result->dtype == FDDataType::INT32) {
|
||||
const int32_t* infer_result_buffer =
|
||||
static_cast<const int32_t*>(infer_result->Data());
|
||||
for (int i = 0; i < out_num; i++) {
|
||||
result->label_map[i] =
|
||||
static_cast<uint8_t>(*(infer_result_buffer + i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// HWC remove C
|
||||
result->shape.erase(result->shape.begin() + 2);
|
||||
delete fp32_result_buffer;
|
||||
delete mat;
|
||||
mat = nullptr;
|
||||
return true;
|
||||
@@ -213,10 +303,8 @@ bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
|
||||
// Record the shape of image and the shape of preprocessed image
|
||||
im_info["input_shape"] = {static_cast<int>(mat.Height()),
|
||||
static_cast<int>(mat.Width())};
|
||||
im_info["output_shape"] = {static_cast<int>(mat.Height()),
|
||||
static_cast<int>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &(processed_data[0]), &im_info)) {
|
||||
if (!Preprocess(&mat, &(processed_data[0]))) {
|
||||
FDERROR << "Failed to preprocess input data while using model:"
|
||||
<< ModelName() << "." << std::endl;
|
||||
return false;
|
||||
@@ -227,7 +315,7 @@ bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
if (!Postprocess(infer_result[0], result, &im_info)) {
|
||||
if (!Postprocess(&infer_result[0], result, im_info)) {
|
||||
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
||||
<< std::endl;
|
||||
return false;
|
||||
|
@@ -18,7 +18,7 @@ class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
|
||||
|
||||
virtual bool Predict(cv::Mat* im, SegmentationResult* result);
|
||||
|
||||
bool with_softmax = false;
|
||||
bool apply_softmax = false;
|
||||
|
||||
bool is_vertical_screen = false;
|
||||
|
||||
@@ -27,20 +27,21 @@ class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
|
||||
|
||||
bool BuildPreprocessPipelineFromConfig();
|
||||
|
||||
bool Preprocess(Mat* mat, FDTensor* outputs,
|
||||
std::map<std::string, std::array<int, 2>>* im_info);
|
||||
bool Preprocess(Mat* mat, FDTensor* outputs);
|
||||
|
||||
bool Postprocess(FDTensor& infer_result, SegmentationResult* result,
|
||||
std::map<std::string, std::array<int, 2>>* im_info);
|
||||
bool Postprocess(FDTensor* infer_result, SegmentationResult* result,
|
||||
const std::map<std::string, std::array<int, 2>>& im_info);
|
||||
|
||||
bool is_resized = false;
|
||||
|
||||
bool is_with_softmax = false;
|
||||
|
||||
bool is_with_argmax = true;
|
||||
|
||||
std::vector<std::shared_ptr<Processor>> processors_;
|
||||
std::string config_file_;
|
||||
};
|
||||
|
||||
void FDTensor2FP32CVMat(cv::Mat& mat, FDTensor& infer_result,
|
||||
bool contain_score_map);
|
||||
} // namespace segmentation
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
@@ -27,8 +27,8 @@ void BindPPSeg(pybind11::module& m) {
|
||||
self.Predict(&mat, res);
|
||||
return res;
|
||||
})
|
||||
.def_readwrite("with_softmax",
|
||||
&vision::segmentation::PaddleSegModel::with_softmax)
|
||||
.def_readwrite("apply_softmax",
|
||||
&vision::segmentation::PaddleSegModel::apply_softmax)
|
||||
.def_readwrite("is_vertical_screen",
|
||||
&vision::segmentation::PaddleSegModel::is_vertical_screen);
|
||||
}
|
||||
|
Reference in New Issue
Block a user