Update ppseg with eigen functions (#238)

* Update ppseg backend support type

* Update ppseg preprocess if condition

* Update README.md

* Update README.md

* Update README.md

* Update ppseg with eigen functions

* Delete old argmax function

* Update README.md

* Delete apply_softmax in ppseg example demo

* Update ppseg code with createFromTensor function

* Delete FDTensor2CVMat function

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update ppseg model.cc with transpose&&softmax in place convert

* Update segmentation_result.md

* Update model.cc

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-09-22 21:21:47 +08:00
committed by GitHub
parent 5ad7f64a3a
commit 625845c7d6
13 changed files with 237 additions and 204 deletions

View File

@@ -21,16 +21,19 @@ PaddleSeg模型导出请参考其文档说明[模型导出](https://github.co
## 下载预训练模型
为了方便开发者的测试下面提供了PaddleSeg导出的部分模型导出方式为**不指定**`input_shape``with_softmax`**指定**`without_argmax`),开发者可直接下载使用。
为了方便开发者的测试下面提供了PaddleSeg导出的部分模型导出方式为**不指定**`--input_shape`**指定**`--output_op none`),开发者可直接下载使用。
| 模型 | 参数文件大小 |输入Shape | mIoU | mIoU (flip) | mIoU (ms+flip) |
|:---------------------------------------------------------------- |:----- |:----- | :----- | :----- | :----- |
| [Unet-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz) | 52MB | 1024x512 | 65.00% | 66.02% | 66.89% |
| [PP-LiteSeg-T(STDC1)-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz) | 31MB | 1024x512 |73.10% | 73.89% | - |
| [PP-HumanSegV1-Lite](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - |
| [PP-HumanSegV1-Server](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - |
| [PP-HumanSegV1-Lite(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Lite_infer.tgz) | 543KB | 192x192 | 86.2% | - | - |
| [PP-HumanSegV2-Lite(通用人像分割模型)](https://bj.bcebos.com/paddle2onnx/libs/PP_HumanSegV2_Lite_192x192_infer.tgz) | 12MB | 192x192 | 92.52% | - | - |
| [PP-HumanSegV2-Mobile(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV2_Mobile_192x192_infer.tgz) | 29MB | 192x192 | 93.13% | - | - |
| [PP-HumanSegV1-Server(通用人像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/PP_HumanSegV1_Server_infer.tgz) | 103MB | 512x512 | 96.47% | - | - |
| [Portait-PP-HumanSegV2_Lite(肖像分割模型)](https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz) | 3.6M | 256x144 | 96.63% | - | - |
| [FCN-HRNet-W18-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/FCN_HRNet_W18_cityscapes_without_argmax_infer.tgz) | 37MB | 1024x512 | 78.97% | 79.49% | 79.74% |
| [Deeplabv3-ResNet50-OS8-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet50_OS8_cityscapes_without_argmax_infer.tgz) | 150MB | 1024x512 | 79.90% | 80.22% | 80.47% |
| [Deeplabv3-ResNet101-OS8-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/Deeplabv3_ResNet101_OS8_cityscapes_without_argmax_infer.tgz) | 150MB | 1024x512 | 79.90% | 80.22% | 80.47% |
## 详细部署文档

View File

@@ -7,7 +7,7 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start)
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上推理为例在本目录执行如下命令即可完成编译测试
```bash
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz
@@ -25,16 +25,16 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# CPU推理
./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0
# GPU推理
./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1
# GPU上TensorRT推理
./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px />
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
@@ -80,10 +80,10 @@ PaddleSegModel模型加载和初始化其中model_file为导出的Paddle模
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`True`表明输入图片是竖屏即height大于width的图片
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
#### 后处理参数
> > * **with_softmax**(bool): 当模型导出时,并未指定`with_softmax`参数,可通过此设置此参数为`True`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
> > * **appy_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
- [模型介绍](../../)
- [Python部署](../python)

View File

@@ -26,6 +26,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
auto config_file = model_dir + sep + "deploy.yaml";
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
@@ -40,6 +41,7 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
@@ -54,6 +56,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
option.UseGpu();
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
@@ -68,6 +71,7 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
@@ -85,6 +89,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
{1, 3, 2048, 2048});
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
@@ -99,6 +104,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::Visualize::VisSegmentation(im_bak, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;

View File

@@ -27,7 +27,7 @@ python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px />
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## PaddleSegModel Python接口
@@ -69,7 +69,7 @@ PaddleSeg模型加载和初始化其中model_file, params_file以及config_fi
> > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏即height大于width的图片
#### 后处理参数
> > * **with_softmax**(bool): 当模型导出时,并未指定`with_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
> > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`将预测的输出分割标签label_map对应的概率结果(score_map)做softmax归一化处理
## 其它文档