[Doc] Update English version of some documents (#1084)

* Create README_CN.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update WebDemo.md

* Update and rename WebDemo_en.md to WebDemo_CN.md

* Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md

* Update DEVELOPMENT_CN.md

* Update DEVELOPMENT.md

* Update RNN.md

* Update and rename RNN_EN.md to RNN_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update export.md

* Update and rename export_EN.md to export_CN.md

* Update README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update kunlunxin.md

* Update classification_result.md

* Update classification_result_EN.md

* Rename classification_result_EN.md to classification_result_CN.md

* Update detection_result.md

* Update and rename detection_result_EN.md to detection_result_CN.md

* Update face_alignment_result.md

* Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md

* Update face_detection_result.md

* Update and rename face_detection_result_EN.md to face_detection_result_CN.md

* Update face_recognition_result.md

* Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md

* Update headpose_result.md

* Update and rename headpose_result_EN.md to headpose_result_CN.md

* Update keypointdetection_result.md

* Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md

* Update matting_result.md

* Update and rename matting_result_EN.md to matting_result_CN.md

* Update mot_result.md

* Update and rename mot_result_EN.md to mot_result_CN.md

* Update ocr_result.md

* Update and rename ocr_result_EN.md to ocr_result_CN.md

* Update segmentation_result.md

* Update and rename segmentation_result_EN.md to segmentation_result_CN.md

* Update README.md

* Update README.md

* Update quantize.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
This commit is contained in:
HCQ14
2023-01-06 18:01:34 +08:00
committed by GitHub
parent 5ea3cb0fd8
commit 61c2f87e0c
84 changed files with 2162 additions and 1630 deletions

View File

@@ -1,30 +1,31 @@
# YOLOv7量化模型 Python部署示例
本目录下提供的`infer.py`,可以帮助用户快速完成YOLOv7量化模型在CPU/GPU上的部署推理加速.
English | [简体中文](README_CN.md)
# YOLOv7 Quantification Model Python Deployment Example
This directory provides examples that `infer.py` fast finishes the deployment of YOLOv7 quantification models on CPU/GPU.
## 部署准备
### FastDeploy环境准备
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
## Prepare the deployment
### FastDeploy Environment Preparation
- 1. i. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. ii. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
### Prepare the quantification model
- 1. Users can directly deploy quantized models provided by FastDeploy.
- 2. Or users can use the [ One-click auto-compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to automatically conduct quantification model for deployment.
## 以量化后的YOLOv7模型为例, 进行部署
## Example: quantized YOLOv7 model
```bash
#下载部署示例代码
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov7/quantize/python
#下载FastDeloy提供的yolov7量化模型文件和测试图片
# Download yolov7 quantification model files and test images provided by FastDeploy
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_quant.tar
tar -xvf yolov7_quant.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 在CPU上使用ONNX Runtime推理量化模型
# Use ONNX Runtime quantification model on CPU
python infer.py --model yolov7_quant --image 000000014439.jpg --device cpu --backend ort
# 在GPU上使用TensorRT推理量化模型
# Use TensorRT quantification model on GPU
python infer.py --model yolov7_quant --image 000000014439.jpg --device gpu --backend trt
# 在GPU上使用Paddle-TensorRT推理量化模型
# Use Paddle-TensorRT quantification model on GPU
python infer.py --model yolov7_quant --image 000000014439.jpg --device gpu --backend pptrt
```

View File

@@ -0,0 +1,31 @@
[English](README.md) | 简体中文
# YOLOv7量化模型 Python部署示例
本目录下提供的`infer.py`,可以帮助用户快速完成YOLOv7量化模型在CPU/GPU上的部署推理加速.
## 部署准备
### FastDeploy环境准备
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
### 量化模型准备
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
## 以量化后的YOLOv7模型为例, 进行部署
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/yolov7/quantize/python
#下载FastDeloy提供的yolov7量化模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_quant.tar
tar -xvf yolov7_quant.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# 在CPU上使用ONNX Runtime推理量化模型
python infer.py --model yolov7_quant --image 000000014439.jpg --device cpu --backend ort
# 在GPU上使用TensorRT推理量化模型
python infer.py --model yolov7_quant --image 000000014439.jpg --device gpu --backend trt
# 在GPU上使用Paddle-TensorRT推理量化模型
python infer.py --model yolov7_quant --image 000000014439.jpg --device gpu --backend pptrt
```