mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-21 15:49:31 +08:00
[Doc] Update English version of some documents (#1084)
* Create README_CN.md * Update README.md * Update README_CN.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Create README_CN.md * Update README.md * Update README.md * Update README_CN.md * Create README_CN.md * Update README.md * Update README.md * Update and rename README_en.md to README_CN.md * Update WebDemo.md * Update and rename WebDemo_en.md to WebDemo_CN.md * Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md * Update DEVELOPMENT_CN.md * Update DEVELOPMENT.md * Update RNN.md * Update and rename RNN_EN.md to RNN_CN.md * Update README.md * Update and rename README_en.md to README_CN.md * Update README.md * Update and rename README_en.md to README_CN.md * Update README.md * Update README_cn.md * Rename README_cn.md to README_CN.md * Update README.md * Update README_cn.md * Rename README_cn.md to README_CN.md * Update export.md * Update and rename export_EN.md to export_CN.md * Update README.md * Update README.md * Create README_CN.md * Update README.md * Update README.md * Update kunlunxin.md * Update classification_result.md * Update classification_result_EN.md * Rename classification_result_EN.md to classification_result_CN.md * Update detection_result.md * Update and rename detection_result_EN.md to detection_result_CN.md * Update face_alignment_result.md * Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md * Update face_detection_result.md * Update and rename face_detection_result_EN.md to face_detection_result_CN.md * Update face_recognition_result.md * Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md * Update headpose_result.md * Update and rename headpose_result_EN.md to headpose_result_CN.md * Update keypointdetection_result.md * Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md * Update matting_result.md * Update and rename matting_result_EN.md to matting_result_CN.md * Update mot_result.md * Update and rename mot_result_EN.md to mot_result_CN.md * Update ocr_result.md * Update and rename ocr_result_EN.md to ocr_result_CN.md * Update segmentation_result.md * Update and rename segmentation_result_EN.md to segmentation_result_CN.md * Update README.md * Update README.md * Update quantize.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md
This commit is contained in:
@@ -1,37 +1,38 @@
|
||||
# YOLOv7量化模型 C++部署示例
|
||||
English | [简体中文](README_CN.md)
|
||||
# YOLOv7 Quantification Model C++ Deployment Example
|
||||
|
||||
本目录下提供的`infer.cc`,可以帮助用户快速完成YOLOv7量化模型在CPU/GPU上的部署推理加速.
|
||||
This directory provides examples that `infer.cc` fast finishes the deployment of YOLOv7 quantification models on CPU/GPU.
|
||||
|
||||
## 部署准备
|
||||
### FastDeploy环境准备
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
## Prepare the deployment
|
||||
### FastDeploy Environment Preparation
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
### 量化模型准备
|
||||
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
|
||||
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
|
||||
### Prepare the quantification model
|
||||
- 1. Users can directly deploy quantized models provided by FastDeploy.
|
||||
- 2. Or users can use the [One-click auto-compression tool](../../../../../../tools/common_tools/auto_compression/) provided by FastDeploy to automatically conduct quantification model for deployment.
|
||||
|
||||
## 以量化后的YOLOv7模型为例, 进行部署
|
||||
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||
## Example: quantized YOLOv7 model
|
||||
The compilation and deployment can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
#下载FastDeloy提供的yolov7量化模型文件和测试图片
|
||||
# Download yolov7 quantification model files and test images provided by FastDeploy
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_quant.tar
|
||||
tar -xvf yolov7_quant.tar
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
|
||||
# 在CPU上使用ONNX Runtime推理量化模型
|
||||
# Use ONNX Runtime quantification model on CPU
|
||||
./infer_demo yolov7_quant 000000014439.jpg 0
|
||||
# 在GPU上使用TensorRT推理量化模型
|
||||
# Use TensorRT quantification model on GPU
|
||||
./infer_demo yolov7_quant 000000014439.jpg 1
|
||||
# 在GPU上使用Paddle-TensorRT推理量化模型
|
||||
# Use Paddle-TensorRT quantification model on GPU
|
||||
./infer_demo yolov7_quant 000000014439.jpg 2
|
||||
```
|
||||
|
38
examples/vision/detection/yolov7/quantize/cpp/README_CN.md
Normal file
38
examples/vision/detection/yolov7/quantize/cpp/README_CN.md
Normal file
@@ -0,0 +1,38 @@
|
||||
[English](README.md) | 简体中文
|
||||
# YOLOv7量化模型 C++部署示例
|
||||
|
||||
本目录下提供的`infer.cc`,可以帮助用户快速完成YOLOv7量化模型在CPU/GPU上的部署推理加速.
|
||||
|
||||
## 部署准备
|
||||
### FastDeploy环境准备
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
### 量化模型准备
|
||||
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
|
||||
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
|
||||
|
||||
## 以量化后的YOLOv7模型为例, 进行部署
|
||||
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
#下载FastDeloy提供的yolov7量化模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_quant.tar
|
||||
tar -xvf yolov7_quant.tar
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
|
||||
|
||||
# 在CPU上使用ONNX Runtime推理量化模型
|
||||
./infer_demo yolov7_quant 000000014439.jpg 0
|
||||
# 在GPU上使用TensorRT推理量化模型
|
||||
./infer_demo yolov7_quant 000000014439.jpg 1
|
||||
# 在GPU上使用Paddle-TensorRT推理量化模型
|
||||
./infer_demo yolov7_quant 000000014439.jpg 2
|
||||
```
|
Reference in New Issue
Block a user