refactor rl get_name_mappings_to_training (#2847)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* refactor rl get_name_mappings_to_training

* fix tp>1

* change variable name(ffn1->up_gate_proj/ffn2->down_proj)

* change variable name(linear_weight->weight/linear_bias->bias)

* add rl names mapping for vl

* fix ernie 0.3B error

* fix develop code

* fix
This commit is contained in:
Yuanle Liu
2025-07-15 22:31:42 +08:00
committed by GitHub
parent e7bcbbab52
commit 61b3997b85
47 changed files with 1591 additions and 1629 deletions

View File

@@ -24,11 +24,14 @@ from fastdeploy.config import FDConfig
from fastdeploy.model_executor.model_loader import ModelRegistry
from fastdeploy.model_executor.models.ernie4_5_moe import \
Ernie4_5_MoeForCausalLM
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import \
Ernie4_5_VLMoeForConditionalGeneration
from fastdeploy.model_executor.models.qwen2 import Qwen2ForCausalLM
from fastdeploy.model_executor.models.qwen3 import Qwen3ForCausalLM
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoeForCausalLM
from fastdeploy.rl.rollout_config import RolloutModelConfig
class RolloutModel(nn.Layer):
"""Main model class for rollout operations, supports multimodal components for train."""
@@ -36,55 +39,26 @@ class RolloutModel(nn.Layer):
"""Initialize with FastDeploy configuration."""
super(RolloutModel, self).__init__()
self.fd_config = rollout_model_config.initialize()
self._init_models()
def _init_models(self):
"""Initialize all model components including multimodal if needed."""
self.is_vl = "VL" in self.fd_config.model_config.architectures[0]
self.rollout_model = self._load_primary_model()
self.rollout_models = [self.rollout_model]
if self.is_vl:
self._init_multimodal_models()
self.rollout_models.extend(
[self.vision_model, self.resampler_model])
def _init_multimodal_models(self):
"""Initialize vision and resampler components for multimodal models."""
# TODO:(gaoziyuan) Implement actual initialization
self.vision_model = nn.Layer()
self.resampler_model = nn.Layer()
def _load_primary_model(self):
"""Load main model from loader based on config."""
if "VL" in self.fd_config.model_config.architectures[0]:
logger.error("Loaded Vision Language model, not support now")
self._init_model()
def _init_model(self):
"""Load model from loader based on config."""
context = paddle.LazyGuard()
architectures = f"{self.fd_config.model_config.architectures[0]}RL"
with context:
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(self.fd_config)
model.eval()
return model
self.rollout_model = model.eval()
def get_name_mappings_to_training(self) -> Dict[str, str]:
"""Get parameter name mappings between rollout and training models."""
mappings = {}
for model in self.rollout_models:
mappings.update(
getattr(model, "get_name_mappings_to_training", lambda: {})())
return mappings
return getattr(self.rollout_model, "get_name_mappings_to_training", lambda: {})()
@paddle.no_grad()
def state_dict(self):
"""state_dict"""
all_params = {}
for model in self.rollout_models:
for name, param in model.state_dict().items():
all_params[name] = param
return all_params
return self.rollout_model.state_dict()
class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
@@ -113,98 +87,159 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
# Initialize mapping dictionary
infer_to_train = {}
infer_base_name = "model"
train_base_name = "ernie"
base_name = "ernie"
# Static mappings (non-layer specific)
static_mappings = {
f"{infer_base_name}.embeddings.word_embeddings.weight":
f"{train_base_name}.embed_tokens.weight",
f"{infer_base_name}.norm.ln_weight": f"{train_base_name}.norm.weight",
"lm_head.out_linear.weight": "lm_head.weight"
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
if self.fd_config.model_config.get("weight_sharing", False):
if self.fd_config.model_config.get("tie_word_embeddings", False):
# Support tie_word_embeddings
logger.debug("enable tie_word_embeddings")
static_mappings.pop("lm_head.out_linear.weight")
static_mappings.pop("lm_head.linear.weight")
infer_to_train.update(static_mappings)
infer_base_name = infer_base_name + ".hidden_layers"
train_base_name = train_base_name + ".layers"
base_name = base_name + ".layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx, is_moe_layer=False):
# Handle special case for layer 0's input layernorm
for ph in place_holders:
infer_key = f"{infer_base_name}.{layer_idx}.input_layernorm.ln_{ph}"
train_key = f"{train_base_name}.{layer_idx}.input_layernorm.{ph}"
infer_to_train[infer_key] = train_key
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
f"{base_name}.{layer_idx}.mlp.gate.weight"
# Common attention mappings
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.qkv_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.qkv_proj.{ph}"
if self.fd_config.model_config.moe_use_aux_free:
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.o_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.o_proj.{ph}"
# Post-attention layernorm
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.post_attention_layernorm.ln_{ph}"] = \
f"{train_base_name}.{layer_idx}.post_attention_layernorm.{ph}"
if not is_moe_layer:
# Dense FFN mappings
# MoE experts mappings
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_up_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.up_gate_proj_weight"
if up_gate_proj_key not in infer_to_train:
infer_to_train[up_gate_proj_key] = []
infer_to_train[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.down_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
else:
# MoE specific mappings
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
f"{train_base_name}.{layer_idx}.mlp.gate.weight"
if self.fd_config.model_config.moe_use_aux_free:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
f"{train_base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# Support shared experts
if self.fd_config.model_config.get(
"moe_num_shared_experts") > 0:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.gate_up_proj.linear_weight"] = \
f"{train_base_name}.{layer_idx}.mlp.shared_experts.up_gate_proj.weight"
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.down_proj.linear_weight"] = \
f"{train_base_name}.{layer_idx}.mlp.shared_experts.down_proj.weight"
# MoE experts mappings
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
for ph in place_holders:
# FFN1 (up_gate_proj)
ffn1_key = f"{infer_base_name}.{layer_idx}.mlp.fused_moe.moe_ffn1_weight"
if ffn1_key not in infer_to_train:
infer_to_train[ffn1_key] = []
infer_to_train[ffn1_key].append(
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# FFN2 (down_proj)
ffn2_key = f"{infer_base_name}.{layer_idx}.mlp.fused_moe.moe_ffn2_weight"
if ffn2_key not in infer_to_train:
infer_to_train[ffn2_key] = []
infer_to_train[ffn2_key].append(
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
# Process non-MoE layers
for layer_idx in range(
self.fd_config.model_config.moe_layer_start_index):
_add_layer_mappings(layer_idx, is_moe_layer=False)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.down_proj_weight"
if down_proj_key not in infer_to_train:
infer_to_train[down_proj_key] = []
infer_to_train[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
assert isinstance(self.fd_config.model_config.moe_layer_start_index, int)
# Process MoE layers
for layer_idx in range(self.fd_config.model_config.moe_layer_start_index,
self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx, is_moe_layer=True)
_add_layer_mappings(layer_idx)
return infer_to_train
class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGeneration):
"""
Ernie4_5_VLMoeForConditionalGenerationRL
"""
def __init__(self, fd_config: FDConfig):
"""
Args:
fd_config (FDConfig): Configurations for the LLM model.
"""
super(Ernie4_5_VLMoeForConditionalGenerationRL, self).__init__(fd_config)
@classmethod
def name(self):
"""name"""
return "Ernie4_5_VLMoeForConditionalGenerationRL"
def get_name_mappings_to_training(self):
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
have_bias = self.fd_config.model_config.get("have_norm_bias", False)
# Prepare placeholders
place_holders = ["weight"] + (["bias"] if have_bias else [])
# Initialize mapping dictionary
infer_to_train = {}
base_name = "ernie"
# Static mappings (non-layer specific)
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
if self.fd_config.model_config.get("tie_word_embeddings", False):
# Support tie_word_embeddings
logger.debug("enable tie_word_embeddings")
static_mappings.pop("lm_head.linear.weight")
infer_to_train.update(static_mappings)
base_name = base_name + ".layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int, moe_tag: str):
# MoE specific mappings
infer_to_train[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = f"{base_name}.{layer_idx}.mlp.gate.weight" if moe_tag == "text" else f"{base_name}.{layer_idx}.mlp.gate.weight_1"
if self.fd_config.model_config.moe_use_aux_free:
infer_to_train[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"] = \
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# MoE experts mappings
assert isinstance(self.fd_config.model_config.moe_num_experts, list)
if moe_tag == "text":
expert_idx_start = 0
expert_idx_end = self.fd_config.model_config.moe_num_experts[0]
else:
expert_idx_start = self.fd_config.model_config.moe_num_experts[0]
expert_idx_end = self.fd_config.model_config.moe_num_experts[1]
for expert_idx in range(expert_idx_start, expert_idx_end):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"
if up_gate_proj_key not in infer_to_train:
infer_to_train[up_gate_proj_key] = []
infer_to_train[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.down_proj_weight"
if down_proj_key not in infer_to_train:
infer_to_train[down_proj_key] = []
infer_to_train[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
moe_layer_start_index = self.fd_config.model_config.moe_layer_start_index
if isinstance(moe_layer_start_index, int):
text_moe_layer_start_index = moe_layer_start_index
image_moe_layer_start_index = moe_layer_start_index
else:
text_moe_layer_start_index = moe_layer_start_index[0]
image_moe_layer_start_index = moe_layer_start_index[1]
moe_layer_end_index = self.fd_config.model_config.moe_layer_end_index
if moe_layer_end_index is None:
text_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
image_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
elif isinstance(moe_layer_end_index, int):
text_moe_layer_end_index = moe_layer_end_index
image_moe_layer_end_index = moe_layer_end_index
else:
text_moe_layer_end_index = moe_layer_end_index[0]
image_moe_layer_end_index = moe_layer_end_index[1]
# Process MoE layers
for layer_idx in range(text_moe_layer_start_index, text_moe_layer_end_index):
_add_layer_mappings(layer_idx, "text")
for layer_idx in range(image_moe_layer_start_index, image_moe_layer_end_index):
_add_layer_mappings(layer_idx, "image")
return infer_to_train
@@ -234,48 +269,23 @@ class Qwen2ForCausalLMRL(Qwen2ForCausalLM):
# Initialize mapping dictionary
infer_to_train = {}
infer_base_name = "model"
train_base_name = "qwen2"
base_name = "qwen2"
# Static mappings (non-layer specific)
static_mappings = {
f"{infer_base_name}.embeddings.word_embeddings.weight":
f"{train_base_name}.embed_tokens.weight",
f"{infer_base_name}.norm.ln_weight": f"{train_base_name}.norm.weight",
"lm_head.out_linear.weight": "lm_head.weight"
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
infer_to_train.update(static_mappings)
infer_base_name = infer_base_name + ".layers"
train_base_name = train_base_name + ".layers"
base_name = base_name + ".layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx):
# Handle special case for layer 0's input layernorm and attn o_proj
for ph in place_holders:
infer_key = f"{infer_base_name}.{layer_idx}.input_layernorm.ln_{ph}"
train_key = f"{train_base_name}.{layer_idx}.input_layernorm.{ph}"
infer_to_train[infer_key] = train_key
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.o_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.o_proj.{ph}"
# qwen qkv proj need bias
for ph in ["weight", "bias"]:
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.qkv_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.qkv_proj.{ph}"
# Post-attention layernorm
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.post_attention_layernorm.ln_{ph}"] = \
f"{train_base_name}.{layer_idx}.post_attention_layernorm.{ph}"
# FFN mappings
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_up_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.down_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
infer_to_train[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = \
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
for layer_idx in range(
self.fd_config.model_config.num_hidden_layers):
@@ -309,95 +319,49 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
# Initialize mapping dictionary
infer_to_train = {}
infer_base_name = "model"
train_base_name = "model"
base_name = "model"
# Static mappings (non-layer specific)
static_mappings = {
f"{infer_base_name}.embeddings.word_embeddings.weight":
f"{train_base_name}.embed_tokens.weight",
f"{infer_base_name}.norm.ln_weight": f"{train_base_name}.norm.weight",
"lm_head.out_linear.weight": "lm_head.weight"
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
infer_to_train.update(static_mappings)
infer_base_name = infer_base_name + ".layers"
train_base_name = train_base_name + ".layers"
base_name = base_name + ".layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx, is_moe_layer=False):
# Handle special case for layer 0's input layernorm and attn o_proj
for ph in place_holders:
infer_key = f"{infer_base_name}.{layer_idx}.input_layernorm.ln_{ph}"
train_key = f"{train_base_name}.{layer_idx}.input_layernorm.{ph}"
infer_to_train[infer_key] = train_key
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
infer_to_train[f"{base_name}.{layer_idx}.mlp.gate_weight"] = \
f"{base_name}.{layer_idx}.mlp.gate.weight"
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.o_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.o_proj.{ph}"
if self.fd_config.moe_config.moe_use_aux_free:
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# qwen q_norm/k_norm
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.q_norm.ln_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.q_norm.{ph}"
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.k_norm.ln_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.k_norm.{ph}"
# qwen qkv proj
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.qkv_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.self_attn.qkv_proj.{ph}"
# Post-attention layernorm
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.post_attention_layernorm.ln_{ph}"] = \
f"{train_base_name}.{layer_idx}.post_attention_layernorm.{ph}"
if not is_moe_layer:
# FFN mappings
# MoE experts mappings
for expert_idx in range(self.fd_config.moe_config.num_experts):
for ph in place_holders:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_up_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.up_gate_proj_weight"
if up_gate_proj_key not in infer_to_train:
infer_to_train[up_gate_proj_key] = []
infer_to_train[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.down_proj.linear_{ph}"] = \
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
else:
# MoE specific mappings
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_weight"] = \
f"{train_base_name}.{layer_idx}.mlp.gate.weight"
if self.fd_config.moe_config.moe_use_aux_free:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
f"{train_base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# Support shared experts
if self.fd_config.model_config.get(
"moe_num_shared_experts", 0) > 0:
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.gate_up_proj.linear_weight"] = \
f"{train_base_name}.{layer_idx}.mlp.shared_experts.up_gate_proj.weight"
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.down_proj.linear_weight"] = \
f"{train_base_name}.{layer_idx}.mlp.shared_experts.down_proj.weight"
# MoE experts mappings
for expert_idx in range(self.fd_config.moe_config.num_experts):
for ph in place_holders:
# FFN1 (up_gate_proj)
ffn1_key = f"{infer_base_name}.{layer_idx}.mlp.moe_ffn1_weight"
if ffn1_key not in infer_to_train:
infer_to_train[ffn1_key] = []
infer_to_train[ffn1_key].append(
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# FFN2 (down_proj)
ffn2_key = f"{infer_base_name}.{layer_idx}.mlp.moe_ffn2_weight"
if ffn2_key not in infer_to_train:
infer_to_train[ffn2_key] = []
infer_to_train[ffn2_key].append(
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.down_proj_weight"
if down_proj_key not in infer_to_train:
infer_to_train[down_proj_key] = []
infer_to_train[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
# Process MoE layers
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx, is_moe_layer=True)
_add_layer_mappings(layer_idx)
return infer_to_train
@@ -417,4 +381,4 @@ class Qwen3ForCausalLMRL(Qwen3ForCausalLM):
@classmethod
def name(self):
"""name"""
return "Qwen3ForCausalLMRL"
return "Qwen3ForCausalLMRL"