mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
refactor rl get_name_mappings_to_training (#2847)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* refactor rl get_name_mappings_to_training * fix tp>1 * change variable name(ffn1->up_gate_proj/ffn2->down_proj) * change variable name(linear_weight->weight/linear_bias->bias) * add rl names mapping for vl * fix ernie 0.3B error * fix develop code * fix
This commit is contained in:
@@ -24,11 +24,14 @@ from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.model_loader import ModelRegistry
|
||||
from fastdeploy.model_executor.models.ernie4_5_moe import \
|
||||
Ernie4_5_MoeForCausalLM
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import \
|
||||
Ernie4_5_VLMoeForConditionalGeneration
|
||||
from fastdeploy.model_executor.models.qwen2 import Qwen2ForCausalLM
|
||||
from fastdeploy.model_executor.models.qwen3 import Qwen3ForCausalLM
|
||||
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoeForCausalLM
|
||||
from fastdeploy.rl.rollout_config import RolloutModelConfig
|
||||
|
||||
|
||||
class RolloutModel(nn.Layer):
|
||||
"""Main model class for rollout operations, supports multimodal components for train."""
|
||||
|
||||
@@ -36,55 +39,26 @@ class RolloutModel(nn.Layer):
|
||||
"""Initialize with FastDeploy configuration."""
|
||||
super(RolloutModel, self).__init__()
|
||||
self.fd_config = rollout_model_config.initialize()
|
||||
self._init_models()
|
||||
|
||||
def _init_models(self):
|
||||
"""Initialize all model components including multimodal if needed."""
|
||||
self.is_vl = "VL" in self.fd_config.model_config.architectures[0]
|
||||
self.rollout_model = self._load_primary_model()
|
||||
self.rollout_models = [self.rollout_model]
|
||||
|
||||
if self.is_vl:
|
||||
self._init_multimodal_models()
|
||||
self.rollout_models.extend(
|
||||
[self.vision_model, self.resampler_model])
|
||||
|
||||
def _init_multimodal_models(self):
|
||||
"""Initialize vision and resampler components for multimodal models."""
|
||||
# TODO:(gaoziyuan) Implement actual initialization
|
||||
self.vision_model = nn.Layer()
|
||||
self.resampler_model = nn.Layer()
|
||||
|
||||
def _load_primary_model(self):
|
||||
"""Load main model from loader based on config."""
|
||||
if "VL" in self.fd_config.model_config.architectures[0]:
|
||||
logger.error("Loaded Vision Language model, not support now")
|
||||
self._init_model()
|
||||
|
||||
def _init_model(self):
|
||||
"""Load model from loader based on config."""
|
||||
context = paddle.LazyGuard()
|
||||
architectures = f"{self.fd_config.model_config.architectures[0]}RL"
|
||||
with context:
|
||||
model_cls = ModelRegistry.get_class(architectures)
|
||||
model = model_cls(self.fd_config)
|
||||
|
||||
model.eval()
|
||||
return model
|
||||
self.rollout_model = model.eval()
|
||||
|
||||
def get_name_mappings_to_training(self) -> Dict[str, str]:
|
||||
"""Get parameter name mappings between rollout and training models."""
|
||||
mappings = {}
|
||||
for model in self.rollout_models:
|
||||
mappings.update(
|
||||
getattr(model, "get_name_mappings_to_training", lambda: {})())
|
||||
return mappings
|
||||
return getattr(self.rollout_model, "get_name_mappings_to_training", lambda: {})()
|
||||
|
||||
@paddle.no_grad()
|
||||
def state_dict(self):
|
||||
"""state_dict"""
|
||||
all_params = {}
|
||||
for model in self.rollout_models:
|
||||
for name, param in model.state_dict().items():
|
||||
all_params[name] = param
|
||||
return all_params
|
||||
return self.rollout_model.state_dict()
|
||||
|
||||
|
||||
class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
|
||||
@@ -113,98 +87,159 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
|
||||
# Initialize mapping dictionary
|
||||
infer_to_train = {}
|
||||
|
||||
infer_base_name = "model"
|
||||
train_base_name = "ernie"
|
||||
base_name = "ernie"
|
||||
# Static mappings (non-layer specific)
|
||||
static_mappings = {
|
||||
f"{infer_base_name}.embeddings.word_embeddings.weight":
|
||||
f"{train_base_name}.embed_tokens.weight",
|
||||
f"{infer_base_name}.norm.ln_weight": f"{train_base_name}.norm.weight",
|
||||
"lm_head.out_linear.weight": "lm_head.weight"
|
||||
f"{base_name}.embed_tokens.embeddings.weight":
|
||||
f"{base_name}.embed_tokens.weight",
|
||||
"lm_head.linear.weight": "lm_head.weight"
|
||||
}
|
||||
if self.fd_config.model_config.get("weight_sharing", False):
|
||||
if self.fd_config.model_config.get("tie_word_embeddings", False):
|
||||
# Support tie_word_embeddings
|
||||
logger.debug("enable tie_word_embeddings")
|
||||
static_mappings.pop("lm_head.out_linear.weight")
|
||||
static_mappings.pop("lm_head.linear.weight")
|
||||
infer_to_train.update(static_mappings)
|
||||
|
||||
infer_base_name = infer_base_name + ".hidden_layers"
|
||||
train_base_name = train_base_name + ".layers"
|
||||
base_name = base_name + ".layers"
|
||||
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx, is_moe_layer=False):
|
||||
# Handle special case for layer 0's input layernorm
|
||||
for ph in place_holders:
|
||||
infer_key = f"{infer_base_name}.{layer_idx}.input_layernorm.ln_{ph}"
|
||||
train_key = f"{train_base_name}.{layer_idx}.input_layernorm.{ph}"
|
||||
infer_to_train[infer_key] = train_key
|
||||
def _add_layer_mappings(layer_idx: int):
|
||||
# MoE specific mappings
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
# Common attention mappings
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.qkv_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.qkv_proj.{ph}"
|
||||
if self.fd_config.model_config.moe_use_aux_free:
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.o_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.o_proj.{ph}"
|
||||
|
||||
# Post-attention layernorm
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.post_attention_layernorm.ln_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.post_attention_layernorm.{ph}"
|
||||
|
||||
if not is_moe_layer:
|
||||
# Dense FFN mappings
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_up_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"
|
||||
# up_gate_proj (up_gate_proj)
|
||||
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.up_gate_proj_weight"
|
||||
if up_gate_proj_key not in infer_to_train:
|
||||
infer_to_train[up_gate_proj_key] = []
|
||||
infer_to_train[up_gate_proj_key].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
|
||||
)
|
||||
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.down_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
|
||||
else:
|
||||
# MoE specific mappings
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
if self.fd_config.model_config.moe_use_aux_free:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# Support shared experts
|
||||
if self.fd_config.model_config.get(
|
||||
"moe_num_shared_experts") > 0:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.gate_up_proj.linear_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.shared_experts.up_gate_proj.weight"
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.down_proj.linear_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.shared_experts.down_proj.weight"
|
||||
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
|
||||
for ph in place_holders:
|
||||
# FFN1 (up_gate_proj)
|
||||
ffn1_key = f"{infer_base_name}.{layer_idx}.mlp.fused_moe.moe_ffn1_weight"
|
||||
if ffn1_key not in infer_to_train:
|
||||
infer_to_train[ffn1_key] = []
|
||||
infer_to_train[ffn1_key].append(
|
||||
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
|
||||
)
|
||||
|
||||
# FFN2 (down_proj)
|
||||
ffn2_key = f"{infer_base_name}.{layer_idx}.mlp.fused_moe.moe_ffn2_weight"
|
||||
if ffn2_key not in infer_to_train:
|
||||
infer_to_train[ffn2_key] = []
|
||||
infer_to_train[ffn2_key].append(
|
||||
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
|
||||
)
|
||||
|
||||
# Process non-MoE layers
|
||||
for layer_idx in range(
|
||||
self.fd_config.model_config.moe_layer_start_index):
|
||||
_add_layer_mappings(layer_idx, is_moe_layer=False)
|
||||
# down_proj (down_proj)
|
||||
down_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.down_proj_weight"
|
||||
if down_proj_key not in infer_to_train:
|
||||
infer_to_train[down_proj_key] = []
|
||||
infer_to_train[down_proj_key].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
|
||||
)
|
||||
|
||||
assert isinstance(self.fd_config.model_config.moe_layer_start_index, int)
|
||||
# Process MoE layers
|
||||
for layer_idx in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
_add_layer_mappings(layer_idx, is_moe_layer=True)
|
||||
_add_layer_mappings(layer_idx)
|
||||
|
||||
return infer_to_train
|
||||
|
||||
|
||||
class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGeneration):
|
||||
"""
|
||||
Ernie4_5_VLMoeForConditionalGenerationRL
|
||||
"""
|
||||
|
||||
def __init__(self, fd_config: FDConfig):
|
||||
"""
|
||||
Args:
|
||||
fd_config (FDConfig): Configurations for the LLM model.
|
||||
"""
|
||||
super(Ernie4_5_VLMoeForConditionalGenerationRL, self).__init__(fd_config)
|
||||
|
||||
@classmethod
|
||||
def name(self):
|
||||
"""name"""
|
||||
return "Ernie4_5_VLMoeForConditionalGenerationRL"
|
||||
|
||||
def get_name_mappings_to_training(self):
|
||||
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
|
||||
have_bias = self.fd_config.model_config.get("have_norm_bias", False)
|
||||
# Prepare placeholders
|
||||
place_holders = ["weight"] + (["bias"] if have_bias else [])
|
||||
|
||||
# Initialize mapping dictionary
|
||||
infer_to_train = {}
|
||||
|
||||
base_name = "ernie"
|
||||
# Static mappings (non-layer specific)
|
||||
static_mappings = {
|
||||
f"{base_name}.embed_tokens.embeddings.weight":
|
||||
f"{base_name}.embed_tokens.weight",
|
||||
"lm_head.linear.weight": "lm_head.weight"
|
||||
}
|
||||
if self.fd_config.model_config.get("tie_word_embeddings", False):
|
||||
# Support tie_word_embeddings
|
||||
logger.debug("enable tie_word_embeddings")
|
||||
static_mappings.pop("lm_head.linear.weight")
|
||||
infer_to_train.update(static_mappings)
|
||||
|
||||
base_name = base_name + ".layers"
|
||||
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx: int, moe_tag: str):
|
||||
# MoE specific mappings
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = f"{base_name}.{layer_idx}.mlp.gate.weight" if moe_tag == "text" else f"{base_name}.{layer_idx}.mlp.gate.weight_1"
|
||||
|
||||
if self.fd_config.model_config.moe_use_aux_free:
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# MoE experts mappings
|
||||
assert isinstance(self.fd_config.model_config.moe_num_experts, list)
|
||||
if moe_tag == "text":
|
||||
expert_idx_start = 0
|
||||
expert_idx_end = self.fd_config.model_config.moe_num_experts[0]
|
||||
else:
|
||||
expert_idx_start = self.fd_config.model_config.moe_num_experts[0]
|
||||
expert_idx_end = self.fd_config.model_config.moe_num_experts[1]
|
||||
|
||||
for expert_idx in range(expert_idx_start, expert_idx_end):
|
||||
for ph in place_holders:
|
||||
# up_gate_proj (up_gate_proj)
|
||||
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"
|
||||
if up_gate_proj_key not in infer_to_train:
|
||||
infer_to_train[up_gate_proj_key] = []
|
||||
infer_to_train[up_gate_proj_key].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
|
||||
)
|
||||
|
||||
# down_proj (down_proj)
|
||||
down_proj_key = f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.down_proj_weight"
|
||||
if down_proj_key not in infer_to_train:
|
||||
infer_to_train[down_proj_key] = []
|
||||
infer_to_train[down_proj_key].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
|
||||
)
|
||||
|
||||
moe_layer_start_index = self.fd_config.model_config.moe_layer_start_index
|
||||
if isinstance(moe_layer_start_index, int):
|
||||
text_moe_layer_start_index = moe_layer_start_index
|
||||
image_moe_layer_start_index = moe_layer_start_index
|
||||
else:
|
||||
text_moe_layer_start_index = moe_layer_start_index[0]
|
||||
image_moe_layer_start_index = moe_layer_start_index[1]
|
||||
|
||||
moe_layer_end_index = self.fd_config.model_config.moe_layer_end_index
|
||||
if moe_layer_end_index is None:
|
||||
text_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
|
||||
image_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
|
||||
elif isinstance(moe_layer_end_index, int):
|
||||
text_moe_layer_end_index = moe_layer_end_index
|
||||
image_moe_layer_end_index = moe_layer_end_index
|
||||
else:
|
||||
text_moe_layer_end_index = moe_layer_end_index[0]
|
||||
image_moe_layer_end_index = moe_layer_end_index[1]
|
||||
# Process MoE layers
|
||||
for layer_idx in range(text_moe_layer_start_index, text_moe_layer_end_index):
|
||||
_add_layer_mappings(layer_idx, "text")
|
||||
for layer_idx in range(image_moe_layer_start_index, image_moe_layer_end_index):
|
||||
_add_layer_mappings(layer_idx, "image")
|
||||
|
||||
return infer_to_train
|
||||
|
||||
@@ -234,48 +269,23 @@ class Qwen2ForCausalLMRL(Qwen2ForCausalLM):
|
||||
# Initialize mapping dictionary
|
||||
infer_to_train = {}
|
||||
|
||||
infer_base_name = "model"
|
||||
train_base_name = "qwen2"
|
||||
base_name = "qwen2"
|
||||
# Static mappings (non-layer specific)
|
||||
static_mappings = {
|
||||
f"{infer_base_name}.embeddings.word_embeddings.weight":
|
||||
f"{train_base_name}.embed_tokens.weight",
|
||||
f"{infer_base_name}.norm.ln_weight": f"{train_base_name}.norm.weight",
|
||||
"lm_head.out_linear.weight": "lm_head.weight"
|
||||
f"{base_name}.embed_tokens.embeddings.weight":
|
||||
f"{base_name}.embed_tokens.weight",
|
||||
"lm_head.linear.weight": "lm_head.weight"
|
||||
}
|
||||
infer_to_train.update(static_mappings)
|
||||
|
||||
infer_base_name = infer_base_name + ".layers"
|
||||
train_base_name = train_base_name + ".layers"
|
||||
base_name = base_name + ".layers"
|
||||
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx):
|
||||
# Handle special case for layer 0's input layernorm and attn o_proj
|
||||
for ph in place_holders:
|
||||
infer_key = f"{infer_base_name}.{layer_idx}.input_layernorm.ln_{ph}"
|
||||
train_key = f"{train_base_name}.{layer_idx}.input_layernorm.{ph}"
|
||||
infer_to_train[infer_key] = train_key
|
||||
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.o_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.o_proj.{ph}"
|
||||
|
||||
# qwen qkv proj need bias
|
||||
for ph in ["weight", "bias"]:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.qkv_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.qkv_proj.{ph}"
|
||||
|
||||
# Post-attention layernorm
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.post_attention_layernorm.ln_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.post_attention_layernorm.{ph}"
|
||||
|
||||
# FFN mappings
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_up_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
|
||||
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.down_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
|
||||
|
||||
for layer_idx in range(
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
@@ -309,95 +319,49 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
|
||||
# Initialize mapping dictionary
|
||||
infer_to_train = {}
|
||||
|
||||
infer_base_name = "model"
|
||||
train_base_name = "model"
|
||||
base_name = "model"
|
||||
# Static mappings (non-layer specific)
|
||||
static_mappings = {
|
||||
f"{infer_base_name}.embeddings.word_embeddings.weight":
|
||||
f"{train_base_name}.embed_tokens.weight",
|
||||
f"{infer_base_name}.norm.ln_weight": f"{train_base_name}.norm.weight",
|
||||
"lm_head.out_linear.weight": "lm_head.weight"
|
||||
f"{base_name}.embed_tokens.embeddings.weight":
|
||||
f"{base_name}.embed_tokens.weight",
|
||||
"lm_head.linear.weight": "lm_head.weight"
|
||||
}
|
||||
infer_to_train.update(static_mappings)
|
||||
|
||||
infer_base_name = infer_base_name + ".layers"
|
||||
train_base_name = train_base_name + ".layers"
|
||||
base_name = base_name + ".layers"
|
||||
|
||||
# Helper function to add layer mappings
|
||||
def _add_layer_mappings(layer_idx, is_moe_layer=False):
|
||||
# Handle special case for layer 0's input layernorm and attn o_proj
|
||||
for ph in place_holders:
|
||||
infer_key = f"{infer_base_name}.{layer_idx}.input_layernorm.ln_{ph}"
|
||||
train_key = f"{train_base_name}.{layer_idx}.input_layernorm.{ph}"
|
||||
infer_to_train[infer_key] = train_key
|
||||
def _add_layer_mappings(layer_idx: int):
|
||||
# MoE specific mappings
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.gate_weight"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.o_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.o_proj.{ph}"
|
||||
if self.fd_config.moe_config.moe_use_aux_free:
|
||||
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# qwen q_norm/k_norm
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.q_norm.ln_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.q_norm.{ph}"
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.k_norm.ln_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.k_norm.{ph}"
|
||||
|
||||
# qwen qkv proj
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.self_attn.qkv_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.self_attn.qkv_proj.{ph}"
|
||||
|
||||
# Post-attention layernorm
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.post_attention_layernorm.ln_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.post_attention_layernorm.{ph}"
|
||||
|
||||
if not is_moe_layer:
|
||||
# FFN mappings
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.moe_config.num_experts):
|
||||
for ph in place_holders:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_up_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
|
||||
# up_gate_proj (up_gate_proj)
|
||||
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.up_gate_proj_weight"
|
||||
if up_gate_proj_key not in infer_to_train:
|
||||
infer_to_train[up_gate_proj_key] = []
|
||||
infer_to_train[up_gate_proj_key].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
|
||||
)
|
||||
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.down_proj.linear_{ph}"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
|
||||
else:
|
||||
# MoE specific mappings
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.gate_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
if self.fd_config.moe_config.moe_use_aux_free:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
# Support shared experts
|
||||
if self.fd_config.model_config.get(
|
||||
"moe_num_shared_experts", 0) > 0:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.gate_up_proj.linear_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.shared_experts.up_gate_proj.weight"
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.shared_experts.down_proj.linear_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.shared_experts.down_proj.weight"
|
||||
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.moe_config.num_experts):
|
||||
for ph in place_holders:
|
||||
# FFN1 (up_gate_proj)
|
||||
ffn1_key = f"{infer_base_name}.{layer_idx}.mlp.moe_ffn1_weight"
|
||||
if ffn1_key not in infer_to_train:
|
||||
infer_to_train[ffn1_key] = []
|
||||
infer_to_train[ffn1_key].append(
|
||||
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
|
||||
)
|
||||
|
||||
# FFN2 (down_proj)
|
||||
ffn2_key = f"{infer_base_name}.{layer_idx}.mlp.moe_ffn2_weight"
|
||||
if ffn2_key not in infer_to_train:
|
||||
infer_to_train[ffn2_key] = []
|
||||
infer_to_train[ffn2_key].append(
|
||||
f"{train_base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
|
||||
)
|
||||
# down_proj (down_proj)
|
||||
down_proj_key = f"{base_name}.{layer_idx}.mlp.down_proj_weight"
|
||||
if down_proj_key not in infer_to_train:
|
||||
infer_to_train[down_proj_key] = []
|
||||
infer_to_train[down_proj_key].append(
|
||||
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
|
||||
)
|
||||
|
||||
# Process MoE layers
|
||||
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
|
||||
_add_layer_mappings(layer_idx, is_moe_layer=True)
|
||||
_add_layer_mappings(layer_idx)
|
||||
|
||||
return infer_to_train
|
||||
|
||||
@@ -417,4 +381,4 @@ class Qwen3ForCausalLMRL(Qwen3ForCausalLM):
|
||||
@classmethod
|
||||
def name(self):
|
||||
"""name"""
|
||||
return "Qwen3ForCausalLMRL"
|
||||
return "Qwen3ForCausalLMRL"
|
||||
|
Reference in New Issue
Block a user