refactor rl get_name_mappings_to_training (#2847)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* refactor rl get_name_mappings_to_training

* fix tp>1

* change variable name(ffn1->up_gate_proj/ffn2->down_proj)

* change variable name(linear_weight->weight/linear_bias->bias)

* add rl names mapping for vl

* fix ernie 0.3B error

* fix develop code

* fix
This commit is contained in:
Yuanle Liu
2025-07-15 22:31:42 +08:00
committed by GitHub
parent e7bcbbab52
commit 61b3997b85
47 changed files with 1591 additions and 1629 deletions

View File

@@ -43,7 +43,7 @@ class RMSNorm(nn.Layer):
hidden_size: int,
eps: float = 1e-5,
prefix: str = "",
linear_bias: paddle.Tensor = None,
bias: paddle.Tensor = None,
quant_scale: float = None,
begin_norm_axis: int = 1,
) -> None:
@@ -57,7 +57,7 @@ class RMSNorm(nn.Layer):
hidden_size (int) : size of hidden state.
eps:(float, optional): Small value added to the variance to avoid division by zero. Defaults to 1e-5.
prefix(str,optional):The name of current layer. Defaults to "".
linear_bias (paddle.Tensor,optional): Initial bias value for the linear layer (if used). Defaults to None.
bias (paddle.Tensor,optional): Initial bias value for the linear layer (if used). Defaults to None.
quant_scale(float,optional):Quantization scale, used in quantization scenarios. Defaults to -1, indicating no quantization.
begin_norm_axis (int, optional): The axis along which to perform normalization. Defaults to 1.
@@ -78,7 +78,7 @@ class RMSNorm(nn.Layer):
self.norm_func: Callable = fused_add_rms_norm
else:
self.norm_func: Callable = fused_rms_norm
self.linear_bias: Optional[paddle.Tensor] = linear_bias
self.bias: Optional[paddle.Tensor] = bias
self.quant_scale: Optional[float] = quant_scale
self._dtype: str = self._helper.get_default_dtype()
self._norm_weight_dtype: str = self._dtype
@@ -94,9 +94,9 @@ class RMSNorm(nn.Layer):
Initialize the weights and biases.
"""
self.ln_weight = None
self.weight = None
if self.with_weight:
self.ln_weight = self.create_parameter(
self.weight = self.create_parameter(
shape=[self.hidden_size],
default_initializer=nn.initializer.Constant(value=1.0),
dtype=self._norm_weight_dtype,
@@ -115,7 +115,7 @@ class RMSNorm(nn.Layer):
weight_tensor = paddle.cast(
get_tensor(state_dict.pop(self.weight_key)),
self._norm_weight_dtype)
self.ln_weight.set_value(weight_tensor)
self.weight.set_value(weight_tensor)
def forward(
self,
@@ -139,18 +139,18 @@ class RMSNorm(nn.Layer):
"""
if current_platform.is_gcu():
if residual_input is None:
return rms_norm(x, self.ln_weight, self.eps)
return rms_norm(x, self.weight, self.eps)
norm_out = self.norm_func(
x, residual_input, self.ln_weight, self.eps
x, residual_input, self.weight, self.eps
)
else:
norm_out = self.norm_func(
x,
norm_weight=self.ln_weight,
norm_weight=self.weight,
norm_bias=None,
epsilon=self.eps,
begin_norm_axis=self.begin_norm_axis,
bias=self.linear_bias,
bias=self.bias,
residual=residual_input,
quant_scale=-1 if self.quant_scale is None else self.quant_scale,
quant_round_type=self.quant_round_type,
@@ -174,7 +174,7 @@ class LayerNorm(nn.Layer):
hidden_size: int,
eps: float = 1e-5,
prefix="",
linear_bias: paddle.Tensor = None,
bias: paddle.Tensor = None,
quant_scale: float = None,
with_bias: bool = False,
):
@@ -189,7 +189,7 @@ class LayerNorm(nn.Layer):
eps:(float, optional): Small value added to the variance to avoid division by zero. Defaults to 1e-5.
prefix (str): Unique name of the layer, used for naming internal attributes,
you can give it any name you like.
linear_bias (float, optional): Initial bias value for the linear layer (if used). Defaults to None.
bias (float, optional): Initial bias value for the linear layer (if used). Defaults to None.
quant_scale(float,optional):Quantization scale, used in quantization scenarios. Defaults to -1, indicating no quantization.
with_bias (bool):Whether to include bias or not. Defaults to False.
Raises:
@@ -212,7 +212,7 @@ class LayerNorm(nn.Layer):
self.norm_func: Callable = paddle.nn.functional.layer_norm
else:
self.norm_func: Callable = fused_layer_norm
self.linear_bias: Optional[paddle.Tensor] = linear_bias
self.bias: Optional[paddle.Tensor] = bias
self._dtype: str = self._helper.get_default_dtype()
self._norm_weight_dtype: str = "float32"
@@ -227,16 +227,16 @@ class LayerNorm(nn.Layer):
Initialize the weights and biases.
"""
self.ln_weight = None
self.weight = None
if self.with_weight:
self.ln_weight = self.create_parameter(
self.weight = self.create_parameter(
shape=[self.hidden_size],
default_initializer=nn.initializer.Constant(value=1.0),
dtype=self._norm_weight_dtype,
)
self.ln_bias = None
self.bias = None
if self.with_bias:
self.ln_bias = self.create_parameter(
self.bias = self.create_parameter(
shape=[self.hidden_size],
is_bias=True,
dtype=self._norm_weight_dtype,
@@ -255,14 +255,14 @@ class LayerNorm(nn.Layer):
weight_tensor = paddle.cast(
get_tensor(state_dict.pop(self.weight_key)),
self._norm_weight_dtype)
self.ln_weight.set_value(weight_tensor)
self.weight.set_value(weight_tensor)
# bias
if self.with_bias:
bias_tensor = paddle.cast(
get_tensor(state_dict.pop(self.bias_key)),
self._norm_weight_dtype)
self.ln_bias.set_value(bias_tensor)
self.bias.set_value(bias_tensor)
def forward(
self,
@@ -285,10 +285,10 @@ class LayerNorm(nn.Layer):
operations (like linear transformation) on the `residual_input`.
"""
if current_platform.is_iluvatar():
if self.ln_weight is None and self.ln_bias is None:
if self.weight is None and self.bias is None:
out = x
if self.linear_bias is not None:
out += self.linear_bias
if self.bias is not None:
out += self.bias
if residual_input is not None:
out += residual_input
return out, out
@@ -303,8 +303,8 @@ class LayerNorm(nn.Layer):
out = self.norm_func(
x=y,
normalized_shape=y.shape[1:],
weight=self.ln_weight,
bias=self.linear_bias,
weight=self.weight,
bias=self.bias,
epsilon=self.eps,
)
return out, y
@@ -312,19 +312,19 @@ class LayerNorm(nn.Layer):
out = self.norm_func(
x=x,
normalized_shape=x.shape[1:],
weight=self.ln_weight,
bias=self.linear_bias,
weight=self.weight,
bias=self.bias,
epsilon=self.eps,
)
return out
else:
norm_out = self.norm_func(
x,
norm_weight=self.ln_weight,
norm_bias=self.ln_bias,
norm_weight=self.weight,
norm_bias=self.bias,
epsilon=self.eps,
begin_norm_axis=1,
bias=self.linear_bias,
bias=self.bias,
residual=residual_input,
quant_scale=-1 if self.quant_scale is None else self.quant_scale,
quant_round_type=self.quant_round_type,