[Docs] Pick seg fastdeploy docs from PaddleSeg (#1482)

* [Docs] Pick seg fastdeploy docs from PaddleSeg

* [Docs] update seg docs

* [Docs] Add c&csharp examples for seg

* [Docs] Add c&csharp examples for seg

* [Doc] Update paddleseg README.md

* Update README.md
This commit is contained in:
DefTruth
2023-03-17 11:22:46 +08:00
committed by GitHub
parent 3b1343c726
commit 5b143219ce
177 changed files with 1019 additions and 815 deletions

View File

@@ -0,0 +1,70 @@
[English](README.md) | 简体中文
# PaddleSeg CPU-GPU Python部署示例
本目录下提供`infer.py`快速完成PP-LiteSeg在CPU/GPU以及GPU上通过Paddle-TensorRT加速部署的示例。执行如下脚本即可完成
## 1. 说明
PaddleSeg支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署Segmentation模型。
## 2. 部署环境准备
在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库。
## 3. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleSeg部署模型](../README.md),如果你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting)。
## 4. 运行部署示例
```bash
# 安装FastDpeloy python包详细文档请参考`部署环境准备`
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/segmentation/semantic_segmentation/cpp-gpu/python
# 如果您希望从PaddleSeg下载示例代码请运行
# git clone https://github.com/PaddlePaddle/PaddleSeg.git
# # 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# # git checkout develop
# cd PaddleSeg/deploy/fastdeploy/semantic_segmentation/cpp-gpu/python
# 下载Unet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
# 运行部署示例
# CPU推理
python infer.py --model PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu
# GPU推理
python infer.py --model PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu
# GPU上使用Paddle-TensorRT推理 注意Paddle-TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/191712880-91ae128d-247a-43e0-b1e3-cafae78431e0.jpg", width=512px, height=256px />
</div>
## 5. 部署示例选项说明
|参数|含义|默认值
|---|---|---|
|--model|指定模型文件夹所在的路径|None|
|--image|指定测试图片所在的路径|None|
|--device|指定即将运行的硬件类型,支持的值为`[cpu, gpu]`当设置为cpu时可运行在x86 cpu/arm cpu等cpu上|cpu|
|--use_trt|是否使用trt该项只在device为gpu时有效|False|
关于如何通过FastDeploy使用更多不同的推理后端以及如何使用不同的硬件请参考文档[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
## 6. 更多指南
- [PaddleSeg python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/semantic_segmentation.html)
- [FastDeploy部署PaddleSeg模型概览](..)
- [PaddleSeg C++部署](../cpp)
## 7. 常见问题
- [如何将模型预测结果SegmentationResult转为numpy格式](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/vision_result_related_problems.md)
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)