mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-23 00:29:35 +08:00
[Docs] Pick seg fastdeploy docs from PaddleSeg (#1482)
* [Docs] Pick seg fastdeploy docs from PaddleSeg * [Docs] update seg docs * [Docs] Add c&csharp examples for seg * [Docs] Add c&csharp examples for seg * [Doc] Update paddleseg README.md * Update README.md
This commit is contained in:
@@ -0,0 +1,63 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PP-Matting CPU-GPU Python部署示例
|
||||
|
||||
本目录下提供`infer.py`快速完成PP-Matting在CPU/GPU、昆仑芯、华为昇腾,以及GPU上通过Paddle-TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
## 1. 说明
|
||||
PaddleSeg支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署Matting模型
|
||||
|
||||
## 2. 部署环境准备
|
||||
在部署前,需确认软硬件环境,同时下载预编译部署库,参考文档[FastDeploy预编译库安装](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install),**注意** 只有CPU、GPU提供预编译库,华为昇腾以及昆仑芯需要参考以上文档自行编译部署环境。
|
||||
|
||||
## 3. 部署模型准备
|
||||
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleSeg部署模型](../README.md)。
|
||||
|
||||
## 4. 运行部署示例
|
||||
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/segmentation/matting/cpp-gpu/python
|
||||
# # 如果您希望从PaddleSeg下载示例代码,请运行
|
||||
# git clone https://github.com/PaddlePaddle/PaddleSeg.git
|
||||
# # 注意:如果当前分支找不到下面的fastdeploy测试代码,请切换到develop分支
|
||||
# # git checkout develop
|
||||
# cd PaddleSeg/deploy/fastdeploy/matting/cpp-gpu/python
|
||||
|
||||
# 下载PP-Matting模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz
|
||||
tar -xvf PP-Matting-512.tgz
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
|
||||
|
||||
# CPU推理
|
||||
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device cpu
|
||||
# GPU推理
|
||||
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu
|
||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
||||
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
|
||||
# 昆仑芯XPU推理
|
||||
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device kunlunxin
|
||||
```
|
||||
**注意** 以上示例未提供华为昇腾的示例,在编译好昇腾部署环境后,只需改造一行代码,将示例文件中的`option.use_kunlunxin()`为`option.use_ascend()`就可以完成在华为昇腾上的推理部署
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
<div width="840">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852040-759da522-fca4-4786-9205-88c622cd4a39.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852587-48895efc-d24a-43c9-aeec-d7b0362ab2b9.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852116-cf91445b-3a67-45d9-a675-c69fe77c383a.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852554-6960659f-4fd7-4506-b33b-54e1a9dd89bf.jpg">
|
||||
</div>
|
||||
|
||||
## 5. 更多指南
|
||||
- [PaddleSeg python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/semantic_segmentation.html)
|
||||
- [FastDeploy部署PaddleSeg模型概览](..)
|
||||
- [PaddleSeg C++部署](../cpp)
|
||||
|
||||
## 6. 常见问题
|
||||
- [如何将模型预测结果SegmentationResult转为numpy格式](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/vision_result_related_problems.md)
|
||||
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|
||||
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
|
||||
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
|
||||
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
|
||||
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)
|
75
examples/vision/segmentation/paddleseg/matting/cpu-gpu/python/infer.py
Executable file
75
examples/vision/segmentation/paddleseg/matting/cpu-gpu/python/infer.py
Executable file
@@ -0,0 +1,75 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of PaddleSeg model.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--bg",
|
||||
type=str,
|
||||
required=True,
|
||||
default=None,
|
||||
help="Path of test background image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
option.use_paddle_infer_backend()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
# If use original Tensorrt, not Paddle-TensorRT,
|
||||
# comment the following two lines
|
||||
option.enable_paddle_to_trt()
|
||||
option.enable_paddle_trt_collect_shape()
|
||||
option.set_trt_input_shape("img", [1, 3, 512, 512])
|
||||
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
# setup runtime
|
||||
runtime_option = build_option(args)
|
||||
model_file = os.path.join(args.model, "model.pdmodel")
|
||||
params_file = os.path.join(args.model, "model.pdiparams")
|
||||
config_file = os.path.join(args.model, "deploy.yaml")
|
||||
model = fd.vision.matting.PPMatting(
|
||||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||||
|
||||
# predict
|
||||
im = cv2.imread(args.image)
|
||||
bg = cv2.imread(args.bg)
|
||||
result = model.predict(im)
|
||||
print(result)
|
||||
|
||||
# visualize
|
||||
vis_im = fd.vision.vis_matting(im, result)
|
||||
vis_im_with_bg = fd.vision.swap_background(im, bg, result)
|
||||
cv2.imwrite("visualized_result_fg.png", vis_im)
|
||||
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
|
||||
print(
|
||||
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.png"
|
||||
)
|
Reference in New Issue
Block a user