[Docs] Pick seg fastdeploy docs from PaddleSeg (#1482)

* [Docs] Pick seg fastdeploy docs from PaddleSeg

* [Docs] update seg docs

* [Docs] Add c&csharp examples for seg

* [Docs] Add c&csharp examples for seg

* [Doc] Update paddleseg README.md

* Update README.md
This commit is contained in:
DefTruth
2023-03-17 11:22:46 +08:00
committed by GitHub
parent 3b1343c726
commit 5b143219ce
177 changed files with 1019 additions and 815 deletions

View File

@@ -0,0 +1,63 @@
[English](README.md) | 简体中文
# PP-Matting CPU-GPU Python部署示例
本目录下提供`infer.py`快速完成PP-Matting在CPU/GPU、昆仑芯、华为昇腾以及GPU上通过Paddle-TensorRT加速部署的示例。执行如下脚本即可完成
## 1. 说明
PaddleSeg支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署Matting模型
## 2. 部署环境准备
在部署前,需确认软硬件环境,同时下载预编译部署库,参考文档[FastDeploy预编译库安装](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install)**注意** 只有CPU、GPU提供预编译库华为昇腾以及昆仑芯需要参考以上文档自行编译部署环境。
## 3. 部署模型准备
在部署前,请准备好您所需要运行的推理模型,你可以选择使用[预导出的推理模型](../README.md)或者[自行导出PaddleSeg部署模型](../README.md)。
## 4. 运行部署示例
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/segmentation/matting/cpp-gpu/python
# # 如果您希望从PaddleSeg下载示例代码请运行
# git clone https://github.com/PaddlePaddle/PaddleSeg.git
# # 注意如果当前分支找不到下面的fastdeploy测试代码请切换到develop分支
# # git checkout develop
# cd PaddleSeg/deploy/fastdeploy/matting/cpp-gpu/python
# 下载PP-Matting模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz
tar -xvf PP-Matting-512.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
# CPU推理
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device cpu
# GPU推理
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
# 昆仑芯XPU推理
python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device kunlunxin
```
**注意** 以上示例未提供华为昇腾的示例,在编译好昇腾部署环境后,只需改造一行代码,将示例文件中的`option.use_kunlunxin()``option.use_ascend()`就可以完成在华为昇腾上的推理部署
运行完成可视化结果如下图所示
<div width="840">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852040-759da522-fca4-4786-9205-88c622cd4a39.jpg">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852587-48895efc-d24a-43c9-aeec-d7b0362ab2b9.jpg">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852116-cf91445b-3a67-45d9-a675-c69fe77c383a.jpg">
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852554-6960659f-4fd7-4506-b33b-54e1a9dd89bf.jpg">
</div>
## 5. 更多指南
- [PaddleSeg python API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/semantic_segmentation.html)
- [FastDeploy部署PaddleSeg模型概览](..)
- [PaddleSeg C++部署](../cpp)
## 6. 常见问题
- [如何将模型预测结果SegmentationResult转为numpy格式](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/vision_result_related_problems.md)
- [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)

View File

@@ -0,0 +1,75 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleSeg model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--bg",
type=str,
required=True,
default=None,
help="Path of test background image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
option.use_paddle_infer_backend()
if args.use_trt:
option.use_trt_backend()
# If use original Tensorrt, not Paddle-TensorRT,
# comment the following two lines
option.enable_paddle_to_trt()
option.enable_paddle_trt_collect_shape()
option.set_trt_input_shape("img", [1, 3, 512, 512])
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
return option
args = parse_arguments()
# setup runtime
runtime_option = build_option(args)
model_file = os.path.join(args.model, "model.pdmodel")
params_file = os.path.join(args.model, "model.pdiparams")
config_file = os.path.join(args.model, "deploy.yaml")
model = fd.vision.matting.PPMatting(
model_file, params_file, config_file, runtime_option=runtime_option)
# predict
im = cv2.imread(args.image)
bg = cv2.imread(args.bg)
result = model.predict(im)
print(result)
# visualize
vis_im = fd.vision.vis_matting(im, result)
vis_im_with_bg = fd.vision.swap_background(im, bg, result)
cv2.imwrite("visualized_result_fg.png", vis_im)
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
print(
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.png"
)