mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 18:11:00 +08:00
[Other] Add detection, segmentation and OCR examples for Ascend deploy. (#983)
* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs
This commit is contained in:
@@ -34,6 +34,8 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
|
||||
# 昆仑芯XPU推理
|
||||
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 3
|
||||
# 华为昇腾推理
|
||||
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 4
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
@@ -135,6 +135,34 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "deploy.yaml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
|
||||
model_file, params_file, config_file, option);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::SegmentationResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisSegmentation(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -155,6 +183,8 @@ int main(int argc, char* argv[]) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 4) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user