mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
[Other] Add detection, segmentation and OCR examples for Ascend deploy. (#983)
* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs
This commit is contained in:
@@ -34,6 +34,8 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
|
||||
# 昆仑芯XPU推理
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 3
|
||||
# 华为昇腾推理
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 4
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
|
@@ -102,6 +102,33 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::PPYOLO(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -120,6 +147,8 @@ int main(int argc, char* argv[]) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -131,6 +131,33 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -151,6 +178,8 @@ int main(int argc, char* argv[]) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 4) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -104,6 +104,33 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -122,6 +149,8 @@ int main(int argc, char* argv[]) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -102,6 +102,34 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::YOLOv3(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -120,6 +148,8 @@ int main(int argc, char* argv[]) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user