mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 17:41:52 +08:00
153
fastdeploy/entrypoints/cli/benchmark/latency.py
Normal file
153
fastdeploy/entrypoints/cli/benchmark/latency.py
Normal file
@@ -0,0 +1,153 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
# This file is modified from https://github.com/vllm-project/vllm/blob/main/vllm/benchmarks/latency.py
|
||||
|
||||
import argparse
|
||||
import dataclasses
|
||||
import json
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
import fastdeploy.envs as envs
|
||||
from fastdeploy.engine.args_utils import EngineArgs
|
||||
from fastdeploy.entrypoints.cli.benchmark.base import BenchmarkSubcommandBase
|
||||
|
||||
|
||||
def add_cli_args(parser: argparse.ArgumentParser):
|
||||
parser.add_argument("--input-len", type=int, default=32)
|
||||
parser.add_argument("--output-len", type=int, default=128)
|
||||
parser.add_argument("--batch-size", type=int, default=8)
|
||||
parser.add_argument(
|
||||
"--n",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of generated sequences per prompt.",
|
||||
)
|
||||
parser.add_argument("--use-beam-search", action="store_true")
|
||||
parser.add_argument(
|
||||
"--num-iters-warmup",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of iterations to run for warmup.",
|
||||
)
|
||||
parser.add_argument("--num-iters", type=int, default=30, help="Number of iterations to run.")
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
help="profile the generation process of a single batch",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-json",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to save the latency results in JSON format.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--disable-detokenize",
|
||||
action="store_true",
|
||||
help=("Do not detokenize responses (i.e. do not include " "detokenization time in the latency measurement)"),
|
||||
)
|
||||
|
||||
parser = EngineArgs.add_cli_args(parser)
|
||||
# V1 enables prefix caching by default which skews the latency
|
||||
# numbers. We need to disable prefix caching by default.
|
||||
parser.set_defaults(enable_prefix_caching=False)
|
||||
|
||||
|
||||
def main(args: argparse.Namespace):
|
||||
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
|
||||
raise OSError(
|
||||
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
|
||||
"Please set it to a valid path to use torch profiler."
|
||||
)
|
||||
engine_args = EngineArgs.from_cli_args(args)
|
||||
|
||||
# Lazy import to avoid importing LLM when the bench command is not selected.
|
||||
from fastdeploy import LLM, SamplingParams
|
||||
|
||||
# NOTE(woosuk): If the request cannot be processed in a single batch,
|
||||
# the engine will automatically process the request in multiple batches.
|
||||
llm = LLM(**dataclasses.asdict(engine_args))
|
||||
assert llm.llm_engine.cfg.max_model_len >= (args.input_len + args.output_len), (
|
||||
"Please ensure that max_model_len is greater than" " the sum of input_len and output_len."
|
||||
)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=args.n,
|
||||
temperature=1.0,
|
||||
top_p=1.0,
|
||||
max_tokens=args.output_len,
|
||||
)
|
||||
dummy_prompt_token_ids = np.random.randint(10000, size=(args.batch_size, args.input_len))
|
||||
dummy_prompts = [{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()]
|
||||
|
||||
def llm_generate():
|
||||
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False, stream=True)
|
||||
|
||||
def run_to_completion():
|
||||
start_time = time.perf_counter()
|
||||
llm_generate()
|
||||
end_time = time.perf_counter()
|
||||
latency = end_time - start_time
|
||||
return latency
|
||||
|
||||
print("Warming up...")
|
||||
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
|
||||
run_to_completion()
|
||||
|
||||
if args.profile:
|
||||
print("Profiling...")
|
||||
run_to_completion()
|
||||
return
|
||||
|
||||
# Benchmark.
|
||||
latencies = []
|
||||
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
|
||||
latencies.append(run_to_completion())
|
||||
latencies = np.array(latencies)
|
||||
percentages = [10, 25, 50, 75, 90, 99]
|
||||
percentiles = np.percentile(latencies, percentages)
|
||||
print(f"Avg latency: {np.mean(latencies)} seconds")
|
||||
for percentage, percentile in zip(percentages, percentiles):
|
||||
print(f"{percentage}% percentile latency: {percentile} seconds")
|
||||
|
||||
# Output JSON results if specified
|
||||
if args.output_json:
|
||||
results = {
|
||||
"avg_latency": np.mean(latencies),
|
||||
"latencies": latencies.tolist(),
|
||||
"percentiles": dict(zip(percentages, percentiles.tolist())),
|
||||
}
|
||||
with open(args.output_json, "w") as f:
|
||||
json.dump(results, f, indent=4)
|
||||
|
||||
|
||||
class BenchmarkLatencySubcommand(BenchmarkSubcommandBase):
|
||||
"""The `latency` subcommand for fastdeploy bench."""
|
||||
|
||||
name = "latency"
|
||||
help = "Benchmark the latency of a single batch of requests."
|
||||
|
||||
@classmethod
|
||||
def add_cli_args(cls, parser: argparse.ArgumentParser) -> None:
|
||||
add_cli_args(parser)
|
||||
|
||||
@staticmethod
|
||||
def cmd(args: argparse.Namespace) -> None:
|
||||
main(args)
|
Reference in New Issue
Block a user