mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
@@ -1,21 +1,101 @@
|
||||
# WINT2 Quantization
|
||||
|
||||
Weights are compressed offline using the CCQ (Convolutional Coding Quantization) method. The actual stored numerical type of weights is INT8, with 4 weights packed into each INT8 value, equivalent to 2 bits per weight. Activations are not quantized. During inference, weights are dequantized and decoded in real-time to BF16 numerical type, and calculations are performed using BF16 numerical type.
|
||||
Weights are compressed offline using the [CCQ (Convolutional Coding Quantization)](https://arxiv.org/pdf/2507.07145) method. The actual stored numerical type of weights is INT8, with 4 weights packed into each INT8 value, equivalent to 2 bits per weight. Activations are not quantized. During inference, weights are dequantized and decoded in real-time to BF16 numerical type, and calculations are performed using BF16 numerical type.
|
||||
- **Supported Hardware**: GPU
|
||||
- **Supported Architecture**: MoE architecture
|
||||
This method relies on the convolution algorithm to use overlapping bits to map 2-bit values to a larger numerical representation space, so that the model weight quantization retains more information of the original data while compressing the true value to an extremely low 2-bit size. The general principle can be seen in the figure below:
|
||||
[卷积编码量化示意图](./wint2.png)
|
||||
|
||||
CCQ WINT2 is generally used in resource-constrained and low-threshold scenarios. Taking ERNIE-4.5-300B-A47B as an example, weights are compressed to 89GB, supporting single-card deployment on 141GB H20.
|
||||
|
||||
## Run WINT2 Inference Service
|
||||
## Executing WINT2 Offline Inference
|
||||
- When executing TP2/TP4 models, you can change the `model_name_or_path` and `tensor_parallel_size` parameters.
|
||||
```
|
||||
model_name_or_path = "baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle"
|
||||
prompts = ["解析三首李白的诗"]
|
||||
from fastdeploy import LLM, SamplingParams
|
||||
sampling_params = SamplingParams(temperature=0.7, top_p=0, max_tokens=128)
|
||||
llm = LLM(model=model_name_or_path, tensor_parallel_size=1, use_cudagraph=True,)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
print(outputs)
|
||||
|
||||
```
|
||||
|
||||
## Run WINT2 Inference Service
|
||||
- When executing TP2/TP4 models, you can change the `--model` and `tensor-parallel-size` parameters.
|
||||
```
|
||||
python -m fastdeploy.entrypoints.openai.api_server \
|
||||
--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle \
|
||||
--port 8180 --engine-worker-queue-port 8181 \
|
||||
--cache-queue-port 8182 --metrics-port 8182 \
|
||||
--port 8180 \
|
||||
--metrics-port 8181 \
|
||||
--engine-worker-queue-port 8182 \
|
||||
--cache-queue-port 8183 \
|
||||
--tensor-parallel-size 1 \
|
||||
--max-model-len 32768 \
|
||||
--max-num-seqs 32
|
||||
--use-cudagraph \
|
||||
--enable-prefix-caching \
|
||||
--enable-chunked-prefill \
|
||||
--max-num-seqs 256
|
||||
```
|
||||
|
||||
## Request the Service
|
||||
After starting the service, the following output indicates successful initialization:
|
||||
|
||||
```shell
|
||||
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
|
||||
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
|
||||
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
|
||||
INFO: Started server process [13909]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
### Health Check
|
||||
|
||||
Verify service status (HTTP 200 indicates success):
|
||||
|
||||
```shell
|
||||
curl -i http://0.0.0.0:8180/health
|
||||
```
|
||||
|
||||
### cURL Request
|
||||
|
||||
Send requests to the service with the following command:
|
||||
|
||||
```shell
|
||||
curl -X POST "http://0.0.0.0:1822/v1/chat/completions" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"messages": [
|
||||
{"role": "user", "content": "Write me a poem about large language model."}
|
||||
],
|
||||
"stream": true
|
||||
}'
|
||||
```
|
||||
|
||||
### Python Client (OpenAI-compatible API)
|
||||
|
||||
FastDeploy's API is OpenAI-compatible. You can also use Python for requests:
|
||||
|
||||
```python
|
||||
import openai
|
||||
host = "0.0.0.0"
|
||||
port = "8180"
|
||||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="null",
|
||||
messages=[
|
||||
{"role": "system", "content": "I'm a helpful AI assistant."},
|
||||
{"role": "user", "content": "Write me a poem about large language model."},
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
if chunk.choices[0].delta:
|
||||
print(chunk.choices[0].delta.content, end='')
|
||||
print('\n')
|
||||
```
|
||||
|
||||
By specifying `--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle`, the offline quantized WINT2 model can be automatically downloaded from AIStudio. In the config.json file of this model, there will be WINT2 quantization-related configuration information, so there's no need to set `--quantization` when starting the inference service.
|
||||
@@ -54,9 +134,7 @@ On the ERNIE-4.5-300B-A47B model, comparison of WINT2 vs WINT4 performance:
|
||||
|
||||
| Test Set | Dataset Size | WINT4 | WINT2 |
|
||||
|---------|---------|---------|---------|
|
||||
| IFEval |500|88.17 | 85.40 |
|
||||
|BBH|6511|94.43|92.02|
|
||||
|DROP|9536|91.17|89.97|
|
||||
|GSM8K|1319|96.21|95.98|
|
||||
|CMath|600|96.50|96.00|
|
||||
|CMMLU|11477|89.92|86.22|
|
||||
| IFEval |500|88.17 | 85.95 |
|
||||
|BBH|6511|94.43|90.06|
|
||||
|DROP|9536|91.17|89.32|
|
||||
|CMMLU|11477|89.92|86.55|
|
||||
|
BIN
docs/quantization/wint2.png
Normal file
BIN
docs/quantization/wint2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 81 KiB |
@@ -1,21 +1,96 @@
|
||||
# WINT2量化
|
||||
|
||||
权重经过CCQ(Convolutional Coding Quantization)方法离线压缩。权重实际存储的数值类型是INT8,每个INT8数值中打包了4个权重,等价于每个权重2bits. 激活不做量化,计算时将权重实时地反量化、解码为BF16数值类型,并用BF16数值类型计算。
|
||||
权重经过 [CCQ(卷积编码量化)](https://arxiv.org/pdf/2507.07145) 方法进行离线压缩。权重的实际存储数值类型为INT8,每个INT8数值中打包了4个权重,等价于每个权重2bits。激活不做量化。在推理过程中,权重会被实时反量化并解码为BF16数值类型,并使用BF16数值类型进行计算。
|
||||
- **支持硬件**:GPU
|
||||
- **支持结构**:MoE结构
|
||||
|
||||
该方法依托卷积算法利用重叠的Bit位将2Bit的数值映射到更大的数值表示空间,使得模型权重量化后既保留原始数据更多的信息,同时将真实数值压缩到极低的2Bit大小,大致原理可参考下图:
|
||||
[卷积编码量化示意图](./wint2.png)
|
||||
|
||||
CCQ WINT2一般用于资源受限的低门槛场景,以ERNIE-4.5-300B-A47B为例,将权重压缩到89GB,可支持141GB H20单卡部署。
|
||||
|
||||
## 启动WINT2推理服务
|
||||
## 执行WINT2离线推理
|
||||
- 执行TP2/TP4模型时,可更换`model_name_or_path`以及`tensor_parallel_size`参数。
|
||||
```
|
||||
model_name_or_path = "baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle"
|
||||
prompts = ["解析三首李白的诗"]
|
||||
from fastdeploy import LLM, SamplingParams
|
||||
sampling_params = SamplingParams(temperature=0.7, top_p=0, max_tokens=128)
|
||||
llm = LLM(model=model_name_or_path, tensor_parallel_size=1, use_cudagraph=True,)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
print(outputs)
|
||||
|
||||
```
|
||||
|
||||
## 启动WINT2推理服务
|
||||
- 执行TP2/TP4模型时,可更换`--model`以及`tensor-parallel-size`参数;
|
||||
```
|
||||
python -m fastdeploy.entrypoints.openai.api_server \
|
||||
--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle \
|
||||
--port 8180 --engine-worker-queue-port 8181 \
|
||||
--cache-queue-port 8182 --metrics-port 8182 \
|
||||
--port 8180 \
|
||||
--metrics-port 8181 \
|
||||
--engine-worker-queue-port 8182 \
|
||||
--cache-queue-port 8183 \
|
||||
--tensor-parallel-size 1 \
|
||||
--max-model-len 32768 \
|
||||
--max-num-seqs 32
|
||||
--use-cudagraph \
|
||||
--enable-prefix-caching \
|
||||
--enable-chunked-prefill \
|
||||
--max-num-seqs 256
|
||||
```
|
||||
|
||||
## 用户发起服务请求
|
||||
|
||||
执行启动服务指令后,当终端打印如下信息,说明服务已经启动成功。
|
||||
|
||||
```
|
||||
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
|
||||
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
|
||||
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
|
||||
INFO: Started server process [13909]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
FastDeploy提供服务探活接口,用以判断服务的启动状态,执行如下命令返回 ```HTTP/1.1 200 OK``` 即表示服务启动成功。
|
||||
|
||||
```shell
|
||||
curl -i http://0.0.0.0:8180/health
|
||||
```
|
||||
|
||||
通过如下命令发起服务请求
|
||||
|
||||
```shell
|
||||
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"messages": [
|
||||
{"role": "user", "content": "把李白的静夜思改写为现代诗"}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
FastDeploy服务接口兼容OpenAI协议,可以通过如下Python代码发起服务请求。
|
||||
|
||||
```python
|
||||
import openai
|
||||
host = "0.0.0.0"
|
||||
port = "8180"
|
||||
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="null",
|
||||
messages=[
|
||||
{"role": "system", "content": "I'm a helpful AI assistant."},
|
||||
{"role": "user", "content": "把李白的静夜思改写为现代诗"},
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
if chunk.choices[0].delta:
|
||||
print(chunk.choices[0].delta.content, end='')
|
||||
print('\n')
|
||||
```
|
||||
|
||||
通过指定 `--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle` 可自动从AIStudio下载已离线量化好的WINT2模型,在该模型的config.json文件中,会有WINT2量化相关的配置信息,不用再在启动推理服务时设置 `--quantization`.
|
||||
@@ -54,8 +129,7 @@ python -m fastdeploy.entrypoints.openai.api_server \
|
||||
|
||||
| 测试集 |数据集大小| WINT4 | WINT2 |
|
||||
|---------|---------|---------|---------|
|
||||
| IFEval |500|88.17 | 85.40 |
|
||||
|BBH|6511|94.43|92.02|
|
||||
|DROP|9536|91.17|89.97|
|
||||
|
||||
## WINT2推理性能
|
||||
| IFEval |500|88.17 | 85.95 |
|
||||
|BBH|6511|94.43|90.06|
|
||||
|DROP|9536|91.17|89.32|
|
||||
|CMMLU|11477|89.92|86.55|
|
||||
|
BIN
docs/zh/quantization/wint2.png
Normal file
BIN
docs/zh/quantization/wint2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 81 KiB |
Reference in New Issue
Block a user