mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Turorials] Add tutorials for intel gpu (#860)
* Add tutorials for intel gpu * fix gflags dependency * Update README_CN.md * Update README.md * Update README.md
This commit is contained in:
20
tutorials/intel_gpu/cpp/CMakeLists.txt
Normal file
20
tutorials/intel_gpu/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# specify the decompress directory of FastDeploy SDK
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_resnet50 ${PROJECT_SOURCE_DIR}/infer_resnet50.cc)
|
||||
add_executable(infer_ppyoloe ${PROJECT_SOURCE_DIR}/infer_ppyoloe.cc)
|
||||
|
||||
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
|
||||
target_link_libraries(infer_resnet50 ${FASTDEPLOY_LIBS} gflags pthread)
|
||||
target_link_libraries(infer_ppyoloe ${FASTDEPLOY_LIBS} gflags pthread)
|
||||
else()
|
||||
target_link_libraries(infer_resnet50 ${FASTDEPLOY_LIBS} gflags)
|
||||
target_link_libraries(infer_ppyoloe ${FASTDEPLOY_LIBS} gflags)
|
||||
endif()
|
52
tutorials/intel_gpu/cpp/README.md
Normal file
52
tutorials/intel_gpu/cpp/README.md
Normal file
@@ -0,0 +1,52 @@
|
||||
English | [中文](README_CN.md)
|
||||
|
||||
# PaddleClas Python Example
|
||||
|
||||
Before deployment, confirm the following two steps
|
||||
|
||||
- 1. The software and hardware environment meet the requirements. Refer to [FastDeploy Environment Requirements](../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Install FastDeploy Python wheel package. Refer to [Install FastDeploy](../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
**Notice** This doc require FastDeploy version >= 1.0.2, or just use nightly built version.
|
||||
|
||||
```bash
|
||||
# Get FastDeploy codes
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/tutorials/intel_gpu/cpu
|
||||
|
||||
mkdir build && cd build
|
||||
|
||||
# Please the preparation step to get the download link
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
|
||||
# Download PaddleClas model and test image
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# Inference with CPU
|
||||
./infer_resnet50 -model ResNet50_vd_infer -image ILSVRC2012_val_00000010.jpeg -device cpu -topk 3
|
||||
|
||||
# Inference with Intel GPU
|
||||
./infer_resnet50 -model ResNet50_vd_infer -image ILSVRC2012_val_00000010.jpeg -device intel_gpu -topk 3
|
||||
|
||||
|
||||
# Download PaddleDetection/PP-YOLOE model and test image
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
# Inference with CPU
|
||||
./infer_ppyoloe -model ppyoloe_crn_l_300e_coco -image 000000014439.jpg -device cpu
|
||||
|
||||
# Inference with Intel GPU
|
||||
./infer_ppyoloe -model ppyoloe_crn_l_300e_coco -image 000000014439.jpg -device intel_gpu
|
||||
```
|
||||
|
||||
This documents only shows how to compile on Linux/Mac, if you are using Windows, please refer the following documents
|
||||
|
||||
- [How to use FastDeploy C++ SDK on Windows](../../../docs/en/faq/use_sdk_on_windows.md)
|
52
tutorials/intel_gpu/cpp/README_CN.md
Normal file
52
tutorials/intel_gpu/cpp/README_CN.md
Normal file
@@ -0,0 +1,52 @@
|
||||
English | [中文](README_CN.md)
|
||||
|
||||
# PaddleClas Python Example
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
**注意** 本文档依赖FastDeploy>=1.0.2版本,或nightly built版本。
|
||||
|
||||
```bash
|
||||
# Get FastDeploy codes
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/tutorials/intel_gpu/cpu
|
||||
|
||||
mkdir build && cd build
|
||||
|
||||
# Please the preparation step to get the download link
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
|
||||
# Download PaddleClas model and test image
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# Inference with CPU
|
||||
./infer_resnet50 -model ResNet50_vd_infer -image ILSVRC2012_val_00000010.jpeg -device cpu -topk 3
|
||||
|
||||
# Inference with Intel GPU
|
||||
./infer_resnet50 -model ResNet50_vd_infer -image ILSVRC2012_val_00000010.jpeg -device intel_gpu -topk 3
|
||||
|
||||
|
||||
# Download PaddleDetection/PP-YOLOE model and test image
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
# Inference with CPU
|
||||
./infer_ppyoloe -model ppyoloe_crn_l_300e_coco -image 000000014439.jpg -device cpu
|
||||
|
||||
# Inference with Intel GPU
|
||||
./infer_ppyoloe -model ppyoloe_crn_l_300e_coco -image 000000014439.jpg -device intel_gpu
|
||||
```
|
||||
|
||||
这篇文档展示的是如何在Linux/Mac上编译和运行,如果你是使用Windows系统,请参考下面的文档进行使用
|
||||
|
||||
- [Windows上使用FastDeploy C++ SDK](../../../docs/cn/faq/use_sdk_on_windows.md)
|
100
tutorials/intel_gpu/cpp/infer_ppyoloe.cc
Normal file
100
tutorials/intel_gpu/cpp/infer_ppyoloe.cc
Normal file
@@ -0,0 +1,100 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
#include "gflags/gflags.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
DEFINE_string(model, "", "Directory of the inference model");
|
||||
DEFINE_string(image, "", "Path of the image file.");
|
||||
|
||||
DEFINE_string(device, "cpu", "Type of openvino device, 'cpu' or 'intel_gpu'");
|
||||
|
||||
void InitAndInfer(const std::string& model_dir, const std::string& image_file, const fastdeploy::RuntimeOption& option) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(
|
||||
model_file, params_file, config_file, option);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
std::cout << "Warmup 20 times..." << std::endl;
|
||||
for (int i = 0; i < 20; ++i) {
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Counting time..." << std::endl;
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
for (int i = 0; i < 50; ++i) {
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
tc.End();
|
||||
std::cout << "Elapsed time: " << tc.Duration() * 1000 << "ms." << std::endl;
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
cv::Mat vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
fastdeploy::RuntimeOption BuildOption(const std::string& device) {
|
||||
if (device != "cpu" && device != "intel_gpu") {
|
||||
std::cerr << "The flag device only can be 'cpu' or 'intel_gpu'" << std::endl;
|
||||
std::abort();
|
||||
}
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseOpenVINOBackend();
|
||||
if (device == "intel_gpu") {
|
||||
option.SetOpenVINODevice("HETERO:GPU,CPU");
|
||||
std::map<std::string, std::vector<int64_t>> shape_info;
|
||||
shape_info["image"] = {1, 3, 640, 640};
|
||||
shape_info["scale_factor"] = {1, 2};
|
||||
option.SetOpenVINOShapeInfo(shape_info);
|
||||
option.SetOpenVINOCpuOperators({"MulticlassNms"});
|
||||
}
|
||||
return option;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
auto option = BuildOption(FLAGS_device);
|
||||
InitAndInfer(FLAGS_model, FLAGS_image, option);
|
||||
return 0;
|
||||
}
|
100
tutorials/intel_gpu/cpp/infer_resnet50.cc
Normal file
100
tutorials/intel_gpu/cpp/infer_resnet50.cc
Normal file
@@ -0,0 +1,100 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
#include "gflags/gflags.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
DEFINE_string(model, "", "Directory of the inference model");
|
||||
DEFINE_string(image, "", "Path of the image file.");
|
||||
DEFINE_int64(topk, 1, "Topk classify result of the image file");
|
||||
|
||||
DEFINE_string(device, "cpu", "Type of openvino device, 'cpu' or 'intel_gpu'");
|
||||
|
||||
void InitAndInfer(const std::string& model_dir, const std::string& image_file, int topk, const fastdeploy::RuntimeOption& option) {
|
||||
auto model_file = model_dir + sep + "inference.pdmodel";
|
||||
auto params_file = model_dir + sep + "inference.pdiparams";
|
||||
auto config_file = model_dir + sep + "inference_cls.yaml";
|
||||
|
||||
auto model = fastdeploy::vision::classification::PaddleClasModel(
|
||||
model_file, params_file, config_file, option);
|
||||
|
||||
model.GetPostprocessor().SetTopk(topk);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
std::cout << "Warmup 20 times..." << std::endl;
|
||||
for (int i = 0; i < 20; ++i) {
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << "Counting time..." << std::endl;
|
||||
fastdeploy::TimeCounter tc;
|
||||
tc.Start();
|
||||
for (int i = 0; i < 50; ++i) {
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
tc.End();
|
||||
std::cout << "Elapsed time: " << tc.Duration() * 1000 << "ms." << std::endl;
|
||||
|
||||
|
||||
fastdeploy::vision::ClassifyResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
// print res
|
||||
std::cout << res.Str() << std::endl;
|
||||
}
|
||||
|
||||
fastdeploy::RuntimeOption BuildOption(const std::string& device) {
|
||||
if (device != "cpu" && device != "intel_gpu") {
|
||||
std::cerr << "The flag device only can be 'cpu' or 'intel_gpu'" << std::endl;
|
||||
std::abort();
|
||||
}
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseOpenVINOBackend();
|
||||
if (device == "intel_gpu") {
|
||||
option.SetOpenVINODevice("GPU");
|
||||
std::map<std::string, std::vector<int64_t>> shape_info;
|
||||
shape_info["inputs"] = {1, 3, 224, 224};
|
||||
option.SetOpenVINOShapeInfo(shape_info);
|
||||
}
|
||||
return option;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
auto option = BuildOption(FLAGS_device);
|
||||
InitAndInfer(FLAGS_model, FLAGS_image, FLAGS_topk, option);
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user