mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00
更新example 和模型转换代码
This commit is contained in:
@@ -15,9 +15,7 @@
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
@@ -27,8 +25,8 @@ tar -xvf PP_TinyPose_256x192_infer.tgz
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg
|
||||
# NPU推理
|
||||
sudo ./infer_tinypose_demo ./PP_TinyPose_256x192_infer ./hrnet_demo.jpg
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
@@ -79,7 +77,7 @@ PPTinyPose模型加载和初始化,其中model_file为导出的Paddle模型格
|
||||
#### 后处理参数
|
||||
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
||||
- [模型介绍](../../../)
|
||||
- [Python部署](../../python)
|
||||
- [视觉模型预测结果](../../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../../docs/cn/faq/how_to_change_backend.md)
|
||||
|
@@ -17,13 +17,14 @@
|
||||
void RKNPU2Infer(const std::string& tinypose_model_dir,
|
||||
const std::string& image_file) {
|
||||
auto tinypose_model_file =
|
||||
tinypose_model_dir + "/picodet_s_416_coco_lcnet_rk3588.rknn";
|
||||
tinypose_model_dir + "/PP_TinyPose_256x192_infer_rk3588_unquantized.rknn";
|
||||
auto tinypose_params_file = "";
|
||||
auto tinypose_config_file = tinypose_model_dir + "infer_cfg.yml";
|
||||
auto tinypose_config_file = tinypose_model_dir + "/infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseRKNPU2();
|
||||
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
||||
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
|
||||
tinypose_model_file, tinypose_params_file, tinypose_config_file, option,
|
||||
fastdeploy::RKNN);
|
||||
|
||||
if (!tinypose_model.Initialized()) {
|
||||
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
||||
@@ -51,20 +52,14 @@ void RKNPU2Infer(const std::string& tinypose_model_dir,
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
if (argc < 3) {
|
||||
std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image "
|
||||
"run_option, "
|
||||
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend; 3: run "
|
||||
"with kunlunxin."
|
||||
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg"
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
RKNPU2Infer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -139,6 +139,18 @@ bool PPTinyPose::Postprocess(std::vector<FDTensor>& infer_result,
|
||||
"Only support batch = 1 in FastDeploy now.");
|
||||
result->Clear();
|
||||
|
||||
if (infer_result.size() == 1) {
|
||||
FDTensor result_copy = infer_result[0];
|
||||
std::cout << "Reshape result_copy!" << std::endl;
|
||||
result_copy.Reshape({result_copy.shape[0], result_copy.shape[1],
|
||||
result_copy.shape[2] * result_copy.shape[3]});
|
||||
std::cout << "Resize infer_result!" << std::endl;
|
||||
infer_result.resize(2);
|
||||
std::cout << "Do ArgMax!" << std::endl;
|
||||
function::ArgMax(result_copy,&infer_result[1],-1);
|
||||
std::cout << "Done!" << std::endl;
|
||||
}
|
||||
|
||||
// Calculate output length
|
||||
int outdata_size =
|
||||
std::accumulate(infer_result[0].shape.begin(),
|
||||
|
Reference in New Issue
Block a user