[Feature][MTP]support new speculative decoding method named hybrid mtp with ngram (#3610)

This commit is contained in:
freeliuzc
2025-08-26 14:29:22 +08:00
committed by GitHub
parent 0a0d2959b9
commit 52eda7fdb3
20 changed files with 454 additions and 571 deletions

View File

@@ -614,7 +614,7 @@ void SpeculateVerify(
const paddle::Tensor &actual_draft_token_nums, const paddle::Tensor &topp,
int max_seq_len, int verify_window, bool enable_topp, bool benchmark_mode);
void SpeculateUpdateV3(const paddle::Tensor &seq_lens_encoder,
void SpeculateUpdate(const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &not_need_stop,
const paddle::Tensor &draft_tokens,
@@ -659,6 +659,20 @@ void NgramMatch(const paddle::Tensor &input_ids,
const int max_draft_tokens);
void HybridMtpNgram(const paddle::Tensor &input_ids,
const paddle::Tensor &input_ids_len,
const paddle::Tensor &pre_ids,
const paddle::Tensor &step_idx,
const paddle::Tensor &draft_token_num,
const paddle::Tensor &draft_tokens,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &max_dec_len,
const int max_ngram_size,
const int min_ngram_size,
const int max_draft_tokens);
// MTP
void DraftModelPostprocess(const paddle::Tensor& base_model_draft_tokens,
const paddle::Tensor& base_model_seq_lens_this_time,
@@ -675,6 +689,7 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const paddle::Tensor& step_idx,
const paddle::Tensor& not_need_stop,
const paddle::Tensor& batch_drop,
const paddle::Tensor& pre_ids,
const paddle::Tensor& accept_tokens,
const paddle::Tensor& accept_num,
const paddle::Tensor& base_model_seq_lens_this_time,
@@ -1121,7 +1136,7 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
m.def("speculate_verify",&SpeculateVerify, "speculate_verify function");
m.def("speculate_update_v3",&SpeculateUpdateV3, "noaux_tc for Deepseekv3 MoE compute function");
m.def("speculate_update",&SpeculateUpdate, "Speculate Update Kernel");
m.def("speculate_set_value_by_flags_and_idx",&SpeculateSetValueByFlagsAndIdx, "speculate_set_value_by_flags_and_idx function");
@@ -1131,6 +1146,8 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
m.def("ngram_match", &NgramMatch, "ngram_match function");
m.def("hybird_mtp_ngram", &HybridMtpNgram, "ngram_match_mixed function");
m.def("draft_model_postprocess",&DraftModelPostprocess, "draft_model_postprocess function");
m.def("draft_model_preprocess",&DraftModelPreprocess, "draft_model_preprocess function");

View File

@@ -26,6 +26,7 @@ __global__ void process_splitwise_prefill(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
@@ -36,11 +37,12 @@ __global__ void process_splitwise_prefill(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len) {
const int base_model_draft_tokens_len,
const int pre_ids_len) {
typedef cub::BlockReduce<int64_t, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int64_t not_stop_flag = 0;
@@ -93,6 +95,7 @@ __global__ void draft_model_preprocess_kernel(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
@@ -103,11 +106,12 @@ __global__ void draft_model_preprocess_kernel(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len) {
const int base_model_draft_tokens_len,
const int pre_ids_len) {
typedef cub::BlockReduce<int64_t, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
int64_t not_stop_flag = 0;
@@ -124,6 +128,7 @@ __global__ void draft_model_preprocess_kernel(
base_model_draft_tokens + tid * base_model_draft_tokens_len;
auto base_model_seq_len_decoder = base_model_seq_lens_decoder[tid];
const int32_t base_model_seq_len_this_time = base_model_seq_lens_this_time[tid];
auto* pre_ids_now = pre_ids + tid * pre_ids_len;
#pragma unroll
for (int i = 1; i < base_model_draft_tokens_len; i++) {
base_model_draft_tokens_now[i] = -1;
@@ -137,14 +142,12 @@ __global__ void draft_model_preprocess_kernel(
if (!(base_model_stop_flags[tid] || batch_drop[tid])) {
not_stop_flag = 1;
// 1. first token
if (base_model_step_idx_now == 0) {
seq_lens_this_time[tid] = 0;
not_stop_flag = 0;
} else if (seq_lens_encoder[tid] > 0) {
if (seq_lens_encoder[tid] > 0) {
// Can be extended to first few tokens
int seq_len_encoder = seq_lens_encoder[tid];
stop_flags[tid] = false;
int64_t base_model_first_token = accept_tokens_now[0];
pre_ids_now[0] = base_model_first_token;
int position = seq_len_encoder;
if (TRCUNCATE_FIRST_TOKEN) {
input_ids_now[position - 1] = base_model_first_token;
@@ -161,34 +164,17 @@ __global__ void draft_model_preprocess_kernel(
step_idx[tid] = base_model_step_idx[tid] - base_model_seq_len_this_time;
} else {
// 2: Last base model generated token and first MTP token
seq_lens_decoder[tid] -= (base_model_seq_len_this_time - 2);
step_idx[tid] -= (base_model_seq_len_this_time - 2);
seq_lens_decoder[tid] -= num_model_step - 1;
step_idx[tid] -= num_model_step - 1;
}
for (int i = 0; i < accept_num_now; i++) {
draft_tokens_now[i] = accept_tokens_now[i];
const int pre_id_pos = base_model_step_idx[tid] - (accept_num_now - i);
const int64_t accept_token = accept_tokens_now[i];
pre_ids_now[pre_id_pos] = accept_token;
}
seq_lens_this_time[tid] = accept_num_now;
}
// (liuzichang): Temperary Reserved for debug
// else if (accept_num_now <=
// max_draft_token) /*Accept partial draft tokens*/ {
// // Base Model reject stop
// if (stop_flags[tid]) {
// stop_flags[tid] = false;
// seq_lens_decoder[tid] = base_model_seq_lens_decoder[tid];
// step_idx[tid] = base_model_step_idx[tid];
// } else {
// seq_lens_decoder[tid] -= max_draft_token - accept_num_now;
// step_idx[tid] -= max_draft_token - accept_num_now;
// }
// int64_t modified_token = accept_tokens_now[accept_num_now - 1];
// draft_tokens_now[0] = modified_token;
// seq_lens_this_time[tid] = 1;
// } else /*Accept all draft tokens*/ {
// draft_tokens_now[1] = accept_tokens_now[max_draft_token];
// seq_lens_this_time[tid] = 2;
// }
} else {
stop_flags[tid] = true;
seq_lens_this_time[tid] = 0;
@@ -215,6 +201,7 @@ void DispatchRunner(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
@@ -225,11 +212,12 @@ void DispatchRunner(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len,
const int pre_ids_len,
const bool splitwise_prefill) {
constexpr int BlockSize = 512;
if (splitwise_prefill) {
@@ -244,6 +232,7 @@ void DispatchRunner(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
@@ -254,11 +243,12 @@ void DispatchRunner(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len);
base_model_draft_tokens_len,
pre_ids_len);
} else {
draft_model_preprocess_kernel<BlockSize, TRCUNCATE_FIRST_TOKEN>
<<<1, BlockSize, 0, stream>>>(
@@ -271,6 +261,7 @@ void DispatchRunner(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
@@ -281,11 +272,12 @@ void DispatchRunner(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len);
base_model_draft_tokens_len,
pre_ids_len);
}
}
@@ -300,6 +292,7 @@ void DispatchTokenMode(
int64_t* step_idx,
bool* not_need_stop,
bool* batch_drop,
int64_t* pre_ids,
const int64_t* accept_tokens,
const int* accept_num,
const int* base_model_seq_lens_this_time,
@@ -310,11 +303,12 @@ void DispatchTokenMode(
const bool* base_model_is_block_step,
int64_t* base_model_draft_tokens,
const int bsz,
const int max_draft_token,
const int num_model_step,
const int accept_tokens_len,
const int draft_tokens_len,
const int input_ids_len,
const int base_model_draft_tokens_len,
const int pre_ids_len,
const bool truncate_first_token,
const bool splitwise_prefill) {
if (truncate_first_token) {
@@ -329,6 +323,7 @@ void DispatchTokenMode(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
@@ -339,11 +334,12 @@ void DispatchTokenMode(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len,
pre_ids_len,
splitwise_prefill
);
} else {
@@ -358,6 +354,7 @@ void DispatchTokenMode(
step_idx,
not_need_stop,
batch_drop,
pre_ids,
accept_tokens,
accept_num,
base_model_seq_lens_this_time,
@@ -368,11 +365,12 @@ void DispatchTokenMode(
base_model_is_block_step,
base_model_draft_tokens,
bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len,
pre_ids_len,
splitwise_prefill
);
}
@@ -390,6 +388,7 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const paddle::Tensor& step_idx,
const paddle::Tensor& not_need_stop,
const paddle::Tensor& batch_drop,
const paddle::Tensor& pre_ids,
const paddle::Tensor& accept_tokens,
const paddle::Tensor& accept_num,
const paddle::Tensor& base_model_seq_lens_this_time,
@@ -399,13 +398,14 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const paddle::Tensor& base_model_stop_flags,
const paddle::Tensor& base_model_is_block_step,
const paddle::Tensor& base_model_draft_tokens,
const int max_draft_token,
const int num_model_step,
const bool truncate_first_token,
const bool splitwise_prefill) {
int real_bsz = seq_lens_this_time.shape()[0];
int accept_tokens_len = accept_tokens.shape()[1];
int input_ids_len = input_ids.shape()[1];
int draft_tokens_len = draft_tokens.shape()[1];
int pre_ids_len = pre_ids.shape()[1];
auto cu_stream = seq_lens_this_time.stream();
constexpr int BlockSize = 512;
int base_model_draft_tokens_len = base_model_draft_tokens.shape()[1];
@@ -423,6 +423,7 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
const_cast<int64_t*>(step_idx.data<int64_t>()),
const_cast<bool*>(not_need_stop_gpu.data<bool>()),
const_cast<bool*>(batch_drop.data<bool>()),
const_cast<int64_t*>(pre_ids.data<int64_t>()),
accept_tokens.data<int64_t>(),
accept_num.data<int>(),
base_model_seq_lens_this_time.data<int>(),
@@ -433,11 +434,12 @@ void DraftModelPreprocess(const paddle::Tensor& draft_tokens,
base_model_is_block_step.data<bool>(),
const_cast<int64_t*>(base_model_draft_tokens.data<int64_t>()),
real_bsz,
max_draft_token,
num_model_step,
accept_tokens_len,
draft_tokens_len,
input_ids_len,
base_model_draft_tokens_len,
pre_ids_len,
truncate_first_token,
splitwise_prefill);
@@ -458,6 +460,7 @@ PD_BUILD_STATIC_OP(draft_model_preprocess)
"step_idx",
"not_need_stop",
"batch_drop",
"pre_ids",
"accept_tokens",
"accept_num",
"base_model_seq_lens_this_time",
@@ -475,8 +478,9 @@ PD_BUILD_STATIC_OP(draft_model_preprocess)
"seq_lens_decoder_out",
"step_idx_out",
"not_need_stop_out",
"batch_drop_out"})
.Attrs({"max_draft_token: int", "truncate_first_token: bool", "splitwise_prefill: bool"})
"batch_drop_out",
"pre_ids_out"})
.Attrs({"num_model_step: int", "truncate_first_token: bool", "splitwise_prefill: bool"})
.SetInplaceMap({{"draft_tokens", "draft_tokens_out"},
{"input_ids", "input_ids_out"},
{"stop_flags", "stop_flags_out"},
@@ -485,5 +489,6 @@ PD_BUILD_STATIC_OP(draft_model_preprocess)
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"step_idx", "step_idx_out"},
{"not_need_stop", "not_need_stop_out"},
{"batch_drop", "batch_drop_out"}})
{"batch_drop", "batch_drop_out"},
{"pre_ids", "pre_ids_out"}})
.SetKernelFn(PD_KERNEL(DraftModelPreprocess));

View File

@@ -63,10 +63,9 @@ __global__ void draft_model_update_kernel(const int64_t* inter_next_tokens,
token_this_time = next_tokens_start[seq_len_this_time - 1];
draft_token_now[0] = next_tokens_start[seq_len_this_time - 1];
base_model_draft_tokens_now[substep + 1] = token_this_time;
for (int i = 0; i < seq_len_this_time; ++i) {
pre_ids_now[step_idx[tid] + 1 + i] = next_tokens_start[i];
}
step_idx[tid] += seq_len_this_time;
pre_ids_now[step_idx[tid]] = token_this_time;
} else {
token_this_time = next_tokens_start[0];

View File

@@ -49,9 +49,7 @@ __global__ void ComputeOrderKernel(
for (int j = 0; j < cur_seq_lens_encoder; j++) {
position_map[in_offset++] = out_offset++;
}
// 2. base model encoder. Base step=0
} else if (cur_base_model_seq_lens_encoder != 0) {
// 3. New end
// 2. Base model stop at last verify-step.
} else if (cur_base_model_seq_lens_this_time != 0 && cur_seq_lens_this_time == 0) {
#ifdef DEBUG_EAGLE_KERNEL
printf("batch %d: base=0. draft !=0 \n", i);

View File

@@ -0,0 +1,214 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <chrono>
#include <cstdlib>
#include "paddle/extension.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
int sum_mixed(const int *value, int num) {
int sum_value = 0;
for (int i = 0; i <= num; i++) {
sum_value += value[i];
}
return sum_value;
}
void find_candidate_pred_tokens_mixed(const int64_t *input_ids,
const int64_t *input_ids_len,
const int64_t *pre_ids,
const int64_t *step_idx,
const int *draft_token_num,
int64_t *draft_tokens,
int32_t *seq_lens_this_time,
int32_t *seq_lens_decoder,
int64_t *max_dec_len,
int64_t input_ids_stride,
int64_t pre_ids_stride,
int64_t draft_tokens_stride,
int64_t max_batch_size,
int max_ngram_size = 3,
int min_ngram_size = 1,
const int max_draft_tokens = 10) {
int threshold = 1024;
// dynamic in future
char *env_var = getenv("SPEC_TOKENUM_THRESHOLD");
if (env_var) {
threshold = std::stoi(env_var);
}
int unprocessed_batch_size = 0;
for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
if (seq_lens_decoder[batch_idx] > 0) {
unprocessed_batch_size++;
}
}
for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
const int ori_seq_len_this_time = seq_lens_this_time[batch_idx];
int max_draft_tokens_query = std::min(static_cast<int64_t>(
max_draft_tokens - ori_seq_len_this_time + 1), max_dec_len[batch_idx] - step_idx[batch_idx] - 1);
if (ori_seq_len_this_time == 0 || max_draft_tokens_query <= 0) {
continue;
}
const int64_t *cur_input_ids = input_ids + batch_idx * input_ids_stride;
int64_t *cur_draft_tokens = draft_tokens + batch_idx * draft_tokens_stride;
const int64_t *cur_pre_ids = pre_ids + batch_idx * pre_ids_stride;
const int64_t cur_step_idx = step_idx[batch_idx];
const int64_t cur_input_ids_len = input_ids_len[batch_idx];
unprocessed_batch_size--;
auto sum_token_num = sum_mixed(seq_lens_this_time, batch_idx);
int left_min_token_num = unprocessed_batch_size;
if (sum_token_num + max_draft_tokens_query + left_min_token_num > threshold) {
int tmp_max_draft_tokens = threshold - sum_token_num - left_min_token_num;
max_draft_tokens_query = std::min(max_draft_tokens_query, tmp_max_draft_tokens);
}
if (sum_token_num + left_min_token_num >= threshold - 1) {
continue;
}
bool match_global = false;
// apply ngram_match in input_ids
for (int ngram_size = max_ngram_size; ngram_size >= min_ngram_size && !match_global; --ngram_size) {
// Extract the last n tokens as our search ngram
if (cur_step_idx < ngram_size) {
continue;
}
const int64_t *ngram = cur_pre_ids + (cur_step_idx + 1 - ngram_size);
// Iterate through sliding windows of size ngram_size
// bool match_input = false;
for (int64_t i = 0; i <= cur_input_ids_len - ngram_size && !match_global; ++i) {
// Check if the current window matches the ngram
bool match_local = true;
for (int j = 0; j < ngram_size; j++) {
if (ngram[j] != cur_input_ids[i + j]) {
match_local = false;
break;
}
}
if (match_local) {
int64_t start_idx = i + ngram_size;
int64_t end_idx = std::min(start_idx + max_draft_tokens_query, cur_input_ids_len);
if (start_idx >= end_idx)
continue;
int64_t cur_draft_token_num = end_idx - start_idx;
seq_lens_this_time[batch_idx] = ori_seq_len_this_time + cur_draft_token_num;
memcpy(cur_draft_tokens + ori_seq_len_this_time, cur_input_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
// To break the current batch_idx for-loop
match_global = true;
break;
}
}
// apply ngram_match in generated tokens
if (!match_global) {
for (int64_t i = 0; i <= cur_step_idx - ngram_size && !match_global; ++i) {
// Check if the current window matches the ngram
bool match_local = true;
for (int j = 0; j < ngram_size; j++) {
if (ngram[j] != cur_pre_ids[i + j]) {
match_local = false;
break;
}
}
if (match_local) {
int64_t start_idx = i + ngram_size;
int64_t end_idx = std::min(start_idx + max_draft_tokens_query, cur_step_idx);
int64_t cur_draft_token_num = end_idx - start_idx;
if (start_idx >= end_idx)
continue;
// printf("match in Output with Ngram_size %d. %lld:[%lld,%lld]\n",ngram_size, cur_draft_token_num, start_idx, end_idx);
seq_lens_this_time[batch_idx] = ori_seq_len_this_time + cur_draft_token_num;
memcpy(cur_draft_tokens + ori_seq_len_this_time, cur_pre_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
match_global = true;
break;
}
}
}
}
}
}
void HybridMtpNgram(const paddle::Tensor &input_ids,
const paddle::Tensor &input_ids_len,
const paddle::Tensor &pre_ids,
const paddle::Tensor &step_idx,
const paddle::Tensor &draft_token_num,
const paddle::Tensor &draft_tokens,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &max_dec_len,
const int max_ngram_size,
const int min_ngram_size,
const int max_draft_tokens) {
auto input_ids_shape = input_ids.shape();
const int64_t input_ids_stride = input_ids_shape[1];
auto pre_ids_shape = pre_ids.shape();
const int64_t pre_ids_stride = pre_ids_shape[1];
auto draft_tokens_shape = draft_tokens.shape();
const int64_t draft_tokens_stride = draft_tokens_shape[1];
const int64_t max_batch_size = seq_lens_this_time.shape()[0];
find_candidate_pred_tokens_mixed(input_ids.data<int64_t>(),
input_ids_len.data<int64_t>(),
pre_ids.data<int64_t>(),
step_idx.data<int64_t>(),
draft_token_num.data<int>(),
const_cast<int64_t *>(draft_tokens.data<int64_t>()),
const_cast<int32_t *>(seq_lens_this_time.data<int32_t>()),
const_cast<int32_t *>(seq_lens_decoder.data<int32_t>()),
const_cast<int64_t *>(max_dec_len.data<int64_t>()),
input_ids_stride,
pre_ids_stride,
draft_tokens_stride,
max_batch_size,
max_ngram_size,
min_ngram_size,
max_draft_tokens);
}
PD_BUILD_STATIC_OP(hybrid_mtp_ngram)
.Inputs({"input_ids",
"input_ids_len",
"pre_ids",
"step_idx",
"draft_token_num",
"draft_tokens",
"seq_lens_this_time",
"seq_lens_decoder",
"max_dec_len"})
.Attrs({"max_ngram_size: int", "min_ngram_size: int", "max_draft_tokens: int"})
.Outputs({"draft_tokens_out", "seq_lens_this_time_out"})
.SetKernelFn(PD_KERNEL(HybridMtpNgram))
.SetInplaceMap({{"draft_tokens", "draft_tokens_out"}, {"seq_lens_this_time", "seq_lens_this_time_out"}});

View File

@@ -23,14 +23,7 @@
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
#define MAX_BSZ 256
#define MAX_DRAFT_TOKENS 6
struct msgdata {
int64_t mtype;
int mtext[MAX_BSZ * MAX_DRAFT_TOKENS + MAX_BSZ +
2]; // stop_flag, bsz, accept_num*bsz, tokens...
};
#include "speculate_msg.h"
void SpeculateGetOutput(const paddle::Tensor& x,
int64_t rank_id,
@@ -54,7 +47,7 @@ void SpeculateGetOutput(const paddle::Tensor& x,
msg_queue_id = inference_msg_queue_id_from_env;
}
static struct msgdata msg_rcv;
static struct speculate_msgdata msg_rcv;
static key_t key = ftok("./", msg_queue_id);

View File

@@ -1,69 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/extension.h"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
__global__ void SpeculateHydraSetScoreThresholdKernel(
float* threshold,
const int* seq_lens_this_time,
const int* seq_lens_encoder,
const int* accept_num,
const int real_bsz,
const float default_threshold = 0.3,
const float upper_threshold = 0.8,
const float lower_threshold = 0.0,
const float threshold_step = 0.1,
const float threshold_step_fac = 0.5) {
for (int bid = threadIdx.x; bid < real_bsz; bid += blockDim.x) {
if (seq_lens_encoder[bid] > 0) {
threshold[bid] = default_threshold;
} else if (seq_lens_this_time[bid] <= 1) {
continue;
} else if (accept_num[bid] >= seq_lens_this_time[bid] &&
threshold[bid] >
lower_threshold + threshold_step * threshold_step_fac) {
threshold[bid] -= threshold_step * threshold_step_fac;
} else if (accept_num[bid] < seq_lens_this_time[bid] &&
threshold[bid] < upper_threshold - threshold_step) {
threshold[bid] += threshold_step;
}
}
}
void SpeculateHydraSetScoreThreshold(const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& accept_num,
const paddle::Tensor& threshold) {
auto cu_stream = seq_lens_this_time.stream();
std::vector<int64_t> seq_lens_this_time_shape = seq_lens_this_time.shape();
const int bsz = seq_lens_this_time_shape[0];
SpeculateHydraSetScoreThresholdKernel<<<1, 256, 0, cu_stream>>>(
const_cast<float*>(threshold.data<float>()),
seq_lens_this_time.data<int>(),
seq_lens_encoder.data<int>(),
accept_num.data<int>(),
bsz);
}
PD_BUILD_STATIC_OP(speculate_hydra_set_score_threshold)
.Inputs(
{"seq_lens_this_time", "seq_lens_encoder", "accept_num", "threshold"})
.Outputs({"threshold_out"})
.SetInplaceMap({{"threshold", "threshold_out"}})
.SetKernelFn(PD_KERNEL(SpeculateHydraSetScoreThreshold));

View File

@@ -1,68 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "helper.h"
__global__ void hydra_update_this_time(int* seq_lens_this_time,
const int* seq_lens_encoder,
const int* seq_lens_decoder,
const float* topk_scores,
const float* score_threshold,
int real_bsz,
int idx) {
int linear_idx = threadIdx.x;
// verify and set stop flags
for (; linear_idx < real_bsz; linear_idx += blockDim.x) {
if (seq_lens_encoder[linear_idx] == 0 &&
seq_lens_decoder[linear_idx] != 0) {
if (topk_scores[linear_idx] > score_threshold[linear_idx] &&
seq_lens_this_time[linear_idx] == idx + 1) {
seq_lens_this_time[linear_idx]++;
}
} else if (seq_lens_encoder[linear_idx] == 0 &&
seq_lens_decoder[linear_idx] == 0) {
seq_lens_this_time[linear_idx] = 0;
}
}
}
void HydraUpdateThisTime(const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& topk_scores,
const paddle::Tensor& score_threshold,
const int real_bsz,
const int idx) {
constexpr int BlockSize = 512;
hydra_update_this_time<<<1, BlockSize, 0, seq_lens_this_time.stream()>>>(
const_cast<int*>(seq_lens_this_time.data<int>()),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
topk_scores.data<float>(),
score_threshold.data<float>(),
real_bsz,
idx);
}
PD_BUILD_STATIC_OP(speculate_hydra_update_seqlens_this_time)
.Inputs({"seq_lens_this_time",
"seq_lens_encoder",
"seq_lens_decoder",
"topk_scores",
"score_threshold"})
.Outputs({"seq_lens_this_time_out"})
.Attrs({"real_bsz: int", "idx: int"})
.SetInplaceMap({{"seq_lens_this_time", "seq_lens_this_time_out"}})
.SetKernelFn(PD_KERNEL(HydraUpdateThisTime));

View File

@@ -1,149 +0,0 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/extension.h"
#include "helper.h"
template <typename T, int VecSize>
__global__ void RebuildAppendPaddingKernel(
T *out,
const T *full_hidden_states,
const int *cum_offset,
const int *seq_len_encoder,
const int *seq_len_decoder,
const int *output_padding_offset,
const int seq_len,
const int dim_embed,
const size_t elem_nums) {
using LoadT = AlignedVector<T, VecSize>;
LoadT src_vec;
const int64_t global_idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int64_t i = global_idx * VecSize; i < elem_nums; i += gridDim.x * blockDim.x * VecSize) {
const int out_token_id = i / dim_embed;
const int ori_token_id = out_token_id + output_padding_offset[out_token_id];
const int bi = ori_token_id / seq_len;
int seq_id = 0;
if (seq_len_decoder[bi] == 0 && seq_len_encoder[bi] == 0) continue;
else if (seq_len_encoder[bi] != 0) {
seq_id = seq_len_encoder[bi] - 1;
}
const int input_token_id = ori_token_id - cum_offset[bi] + seq_id;
const int bias_idx = i % dim_embed;
Load<T, VecSize>(&full_hidden_states[input_token_id * dim_embed + bias_idx], &src_vec);
Store<T, VecSize>(src_vec, &out[i]);
}
}
template <paddle::DataType D>
std::vector<paddle::Tensor> DispatchDtype(
const paddle::Tensor& full_hidden_states,
const paddle::Tensor& cum_offsets,
const paddle::Tensor& seq_len_encoder,
const paddle::Tensor& seq_len_decoder,
const paddle::Tensor& output_padding_offset,
const int max_seq_len) {
// src: [token_num, dim_embed]
// dst: [batch_size, 1, dim_embed]
typedef PDTraits<D> traits_;
typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t;
int dim_embed = full_hidden_states.shape()[1];
int output_token_num = output_padding_offset.shape()[0];
int elem_nums = output_token_num * dim_embed;
constexpr int PackSize = VEC_16B / sizeof(DataType_);
assert(elem_nums % PackSize == 0);
auto out = paddle::full({output_token_num, dim_embed}, 0, full_hidden_states.dtype(), full_hidden_states.place());
int pack_num = elem_nums / PackSize;
const int threads_per_block = 128;
int grid_size = 1;
GetNumBlocks(pack_num, &grid_size);
RebuildAppendPaddingKernel<DataType_, PackSize><<<grid_size, threads_per_block, 0, full_hidden_states.stream()>>>(
reinterpret_cast<DataType_*>(out.data<data_t>()),
reinterpret_cast<const DataType_*>(full_hidden_states.data<data_t>()),
cum_offsets.data<int32_t>(),
seq_len_encoder.data<int32_t>(),
seq_len_decoder.data<int32_t>(),
output_padding_offset.data<int32_t>(),
max_seq_len,
dim_embed,
elem_nums);
return {out};
}
std::vector<paddle::Tensor> RebuildAppendPadding(
const paddle::Tensor& full_hidden_states,
const paddle::Tensor& cum_offsets,
const paddle::Tensor& seq_len_encoder,
const paddle::Tensor& seq_len_decoder,
const paddle::Tensor& output_padding_offset,
const int max_seq_len) {
switch (full_hidden_states.dtype()) {
case paddle::DataType::BFLOAT16:
return DispatchDtype<paddle::DataType::BFLOAT16>(
full_hidden_states, cum_offsets, seq_len_encoder, seq_len_decoder, output_padding_offset, max_seq_len);
case paddle::DataType::FLOAT16:
return DispatchDtype<paddle::DataType::FLOAT16>(
full_hidden_states, cum_offsets, seq_len_encoder, seq_len_decoder, output_padding_offset, max_seq_len);
default:
PD_THROW("Unsupported data type.");
}
}
std::vector<std::vector<int64_t>> RebuildAppendPaddingInferShape(
const std::vector<int64_t>& full_hidden_states_shape,
const std::vector<int64_t>& cum_offsets_shape,
const std::vector<int64_t>& seq_len_encoder_shape,
const std::vector<int64_t>& seq_len_decoder_shape,
const std::vector<int64_t>& output_padding_offset_shape) {
const int64_t output_token_num = output_padding_offset_shape[0];
const int64_t dim_embed = full_hidden_states_shape[1];
std::vector<int64_t> out_shape = {output_token_num, dim_embed};
return {out_shape};
}
std::vector<paddle::DataType> RebuildAppendPaddingInferDtype(
const paddle::DataType& full_hidden_states_dtype,
const paddle::DataType& cum_offsets_dtype,
const paddle::DataType& seq_len_encoder_dtype,
const paddle::DataType& seq_len_decoder_dtype,
const paddle::DataType& output_padding_offset_dtype) {
return {full_hidden_states_dtype};
}
PD_BUILD_STATIC_OP(speculate_rebuild_append_padding)
.Inputs({"full_hidden_states",
"cum_offsets",
"seq_len_encoder",
"seq_len_decoder",
"output_padding_offset"})
.Attrs({"max_seq_len: int"})
.Outputs({"out"})
.SetKernelFn(PD_KERNEL(RebuildAppendPadding))
.SetInferShapeFn(PD_INFER_SHAPE(RebuildAppendPaddingInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(RebuildAppendPaddingInferDtype));

View File

@@ -23,14 +23,7 @@
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
#define MAX_BSZ 256
#define MAX_DRAFT_TOKENS 6
struct msgdata {
long mtype;
int mtext[MAX_BSZ * MAX_DRAFT_TOKENS + MAX_BSZ +
2]; // stop_flag, bsz, tokens
};
#include "speculate_msg.h"
void SpeculateSaveWithOutputMsg(const paddle::Tensor& accept_tokens,
const paddle::Tensor& accept_num,
@@ -62,7 +55,7 @@ void SpeculateSaveWithOutputMsg(const paddle::Tensor& accept_tokens,
#endif
msg_queue_id = inference_msg_queue_id_from_env;
}
static struct msgdata msg_sed;
static struct speculate_msgdata msg_sed;
static key_t key = ftok("./", msg_queue_id);
static int msgid = msgget(key, IPC_CREAT | 0666);

View File

@@ -15,7 +15,7 @@
#include "helper.h"
template <int THREADBLOCK_SIZE>
__global__ void speculate_update_v3(int *seq_lens_encoder,
__global__ void speculate_update(int *seq_lens_encoder,
int *seq_lens_decoder,
bool *not_need_stop,
int64_t *draft_tokens,
@@ -90,7 +90,7 @@ __global__ void speculate_update_v3(int *seq_lens_encoder,
}
}
void SpeculateUpdateV3(const paddle::Tensor &seq_lens_encoder,
void SpeculateUpdate(const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &not_need_stop,
const paddle::Tensor &draft_tokens,
@@ -108,7 +108,7 @@ void SpeculateUpdateV3(const paddle::Tensor &seq_lens_encoder,
constexpr int BlockSize = 512;
auto not_need_stop_gpu = not_need_stop.copy_to(stop_flags.place(), false);
speculate_update_v3<BlockSize><<<1, BlockSize, 0, accept_tokens.stream()>>>(
speculate_update<BlockSize><<<1, BlockSize, 0, accept_tokens.stream()>>>(
const_cast<int *>(seq_lens_encoder.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<bool *>(not_need_stop_gpu.data<bool>()),
@@ -130,7 +130,7 @@ void SpeculateUpdateV3(const paddle::Tensor &seq_lens_encoder,
not_need_stop_data[0] = not_need_stop_cpu.data<bool>()[0];
}
PD_BUILD_STATIC_OP(speculate_update_v3)
PD_BUILD_STATIC_OP(speculate_update)
.Inputs({"seq_lens_encoder",
"seq_lens_decoder",
"not_need_stop",
@@ -152,4 +152,4 @@ PD_BUILD_STATIC_OP(speculate_update_v3)
{"not_need_stop", "not_need_stop_out"},
{"draft_tokens", "draft_tokens_out"},
{"actual_draft_token_nums", "actual_draft_token_nums_out"}})
.SetKernelFn(PD_KERNEL(SpeculateUpdateV3));
.SetKernelFn(PD_KERNEL(SpeculateUpdate));

View File

@@ -1,55 +0,0 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "helper.h" // NOLINT
__global__ void update_this_time(int* seq_lens_this_time,
const int* seq_lens_encoder,
const int* seq_lens_decoder,
int real_bsz,
int value) {
int linear_idx = threadIdx.x;
// verify and set stop flags
for (; linear_idx < real_bsz; linear_idx += blockDim.x) {
if (seq_lens_encoder[linear_idx] == 0 &&
seq_lens_decoder[linear_idx] != 0) {
seq_lens_this_time[linear_idx] = value;
} else if (seq_lens_encoder[linear_idx] == 0 &&
seq_lens_decoder[linear_idx] == 0) {
seq_lens_this_time[linear_idx] = 0;
}
}
}
void UpdateThisTime(const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const int real_bsz,
const int value) {
constexpr int BlockSize = 512;
update_this_time<<<1, BlockSize, 0, seq_lens_this_time.stream()>>>(
const_cast<int*>(seq_lens_this_time.data<int>()),
seq_lens_encoder.data<int>(),
seq_lens_decoder.data<int>(),
real_bsz,
value);
}
PD_BUILD_STATIC_OP(speculate_update_seq_lens_this_time)
.Inputs({"seq_lens_this_time", "seq_lens_encoder", "seq_lens_decoder"})
.Outputs({"seq_lens_this_time_out"})
.Attrs({"real_bsz: int", "value: int"})
.SetInplaceMap({{"seq_lens_this_time", "seq_lens_this_time_out"}})
.SetKernelFn(PD_KERNEL(UpdateThisTime));

View File

@@ -1,146 +0,0 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "helper.h" // NOLINT
template <int THREADBLOCK_SIZE>
__global__ void speculate_update(int *seq_lens_encoder,
int *seq_lens_decoder,
bool *not_need_stop,
int64_t *draft_tokens,
int *actual_draft_token_nums,
const int64_t *accept_tokens,
const int *accept_num,
const bool *stop_flags,
const int *seq_lens_this_time,
const bool *is_block_step,
const int real_bsz,
const int max_draft_tokens) {
const int bid = threadIdx.x;
const int accept_num_now = accept_num[bid];
int stop_flag_now_int = 0;
if (!(is_block_step[bid] || bid >= real_bsz)) {
if (stop_flags[bid]) {
stop_flag_now_int = 1;
}
if (seq_lens_encoder[bid] == 0) {
seq_lens_decoder[bid] += accept_num_now;
}
if (seq_lens_this_time[bid] > 1 &&
seq_lens_encoder[bid] ==
0) { // 对于append模式需要根据接收与否确定是否要降低下次draft
// token的数量
auto current_actual_draft_token_num = actual_draft_token_nums[bid];
if (accept_num_now - 1 == current_actual_draft_token_num) {
if (current_actual_draft_token_num + 2 <=
max_draft_tokens - 1) {
actual_draft_token_nums[bid] =
current_actual_draft_token_num + 2;
} else if (current_actual_draft_token_num + 1 <=
max_draft_tokens - 1) {
actual_draft_token_nums[bid] =
current_actual_draft_token_num + 1;
} else {
actual_draft_token_nums[bid] = max_draft_tokens - 1;
}
} else {
actual_draft_token_nums[bid] =
actual_draft_token_nums[bid] - 1 >= 1
? actual_draft_token_nums[bid] - 1
: 1;
}
}
if (seq_lens_encoder[bid] != 0) {
seq_lens_decoder[bid] += seq_lens_encoder[bid];
seq_lens_encoder[bid] = 0;
}
draft_tokens[bid * max_draft_tokens] =
accept_tokens[bid * max_draft_tokens + accept_num_now - 1];
if (stop_flag_now_int) {
seq_lens_decoder[bid] = 0;
}
}
__syncthreads();
typedef cub::BlockReduce<int64_t, THREADBLOCK_SIZE> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
// printf("stop_flag_now_int %d \n", stop_flag_now_int);
int64_t stop_sum = BlockReduce(temp_storage).Sum(stop_flag_now_int);
if (threadIdx.x == 0) {
// printf("stop_sum %d \n", stop_sum);
not_need_stop[0] = stop_sum < real_bsz;
}
}
void SpeculateUpdateV2(const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &not_need_stop,
const paddle::Tensor &draft_tokens,
const paddle::Tensor &actual_draft_token_nums,
const paddle::Tensor &accept_tokens,
const paddle::Tensor &accept_num,
const paddle::Tensor &stop_flags,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &is_block_step) {
int real_bsz = seq_lens_this_time.shape()[0];
auto max_draft_tokens = draft_tokens.shape()[1];
constexpr int BlockSize = 512;
auto not_need_stop_gpu = not_need_stop.copy_to(stop_flags.place(), false);
speculate_update<BlockSize><<<1, BlockSize, 0, accept_tokens.stream()>>>(
const_cast<int *>(seq_lens_encoder.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<bool *>(not_need_stop_gpu.data<bool>()),
const_cast<int64_t *>(draft_tokens.data<int64_t>()),
const_cast<int *>(actual_draft_token_nums.data<int>()),
accept_tokens.data<int64_t>(),
accept_num.data<int>(),
stop_flags.data<bool>(),
seq_lens_this_time.data<int>(),
is_block_step.data<bool>(),
real_bsz,
max_draft_tokens);
auto not_need_stop_cpu =
not_need_stop_gpu.copy_to(not_need_stop.place(), true);
bool *not_need_stop_data = const_cast<bool *>(not_need_stop.data<bool>());
not_need_stop_data[0] = not_need_stop_cpu.data<bool>()[0];
}
PD_BUILD_STATIC_OP(speculate_update_v2)
.Inputs({"seq_lens_encoder",
"seq_lens_decoder",
"not_need_stop",
"draft_tokens",
"actual_draft_token_nums",
"accept_tokens",
"accept_num",
"stop_flags",
"seq_lens_this_time",
"is_block_step"})
.Outputs({"seq_lens_encoder_out",
"seq_lens_decoder_out",
"not_need_stop_out",
"draft_tokens_out",
"actual_draft_token_nums_out"})
.SetInplaceMap({{"seq_lens_encoder", "seq_lens_encoder_out"},
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"not_need_stop", "not_need_stop_out"},
{"draft_tokens", "draft_tokens_out"},
{"actual_draft_token_nums", "actual_draft_token_nums_out"}})
.SetKernelFn(PD_KERNEL(SpeculateUpdateV2));

View File

@@ -349,16 +349,24 @@ class SpeculativeConfig:
self,
args,
):
# speculative method, choose in [None, "ngram_match", "mtp"]
self.method_list = ["ngram_match", "mtp"]
self.mtp_strategy_list = ["default", "with_ngram"]
# speculative method, choose in [None, "ngram_match", "mtp", "hybrid_mtp_ngram"]
self.method: Optional[str] = None
# mtp strategy in mtp-method
self.mtp_strategy = "default"
# the max length of speculative tokens
self.num_speculative_tokens: int = 1
# the model runner step of draft model/mtp...
self.num_model_steps: int = 1
# the max length of candidate tokens for speculative method
self.max_candidate_len: int = 5
# the max length of verify window for speculative method
self.verify_window: int = 2
# ngram match
self.max_ngram_size: int = 5
self.min_ngram_size: int = 2
# model for mtp/eagle/draft_model
self.model: Optional[str] = None
# quantization of model
@@ -445,6 +453,33 @@ class SpeculativeConfig:
logger.info("{:<20}:{:<6}{}".format(k, "", v))
logger.info("=============================================================")
def check_legality_parameters(
self,
) -> None:
"""Check the legality of parameters passed in from the command line"""
if self.method is not None:
assert (
self.method in self.method_list
), f"speculative method only support {self.method_list} now, but get {self.method}."
assert (
self.num_speculative_tokens >= 1 and self.num_speculative_tokens <= 5
), f"num_speculative_tokens only support in range[1, 5], but get {self.num_speculative_tokens}."
assert (
self.num_model_steps >= 1 and self.num_model_steps <= 5
), f"num_model_steps only support in range[1, 5], but get {self.num_model_steps}."
if self.method in ["mtp", "hybrid_mtp_ngram"]:
if self.num_speculative_tokens < self.num_model_steps:
logger.warning(
f"Get num_model_steps > num_speculative_tokens. Reset num_speculative_tokens to {self.num_model_steps}"
)
self.num_speculative_tokens = self.num_model_steps
assert (
self.mtp_strategy in self.mtp_strategy_list
), f"mtp_strategy_list only support {self.mtp_strategy_list}, but get {self.mtp_strategy}"
def __str__(self) -> str:
return self.to_json_string()

View File

@@ -248,6 +248,7 @@ class Ernie4_5_MTPModel(nn.Layer):
self.num_layers = fd_config.model_config.num_hidden_layers
self.embed_tokens = fd_config.speculative_config.sharing_model.ernie.embed_tokens
self.norm = fd_config.speculative_config.sharing_model.ernie.norm
self.layers = nn.LayerList(
[
@@ -318,6 +319,8 @@ class Ernie4_5_MTPModel(nn.Layer):
hidden_states = hidden_states + residual
hidden_states = self.norm(hidden_states)
return hidden_states

View File

@@ -68,7 +68,7 @@ else:
speculate_set_value_by_flags_and_idx,
speculate_step_paddle,
speculate_step_system_cache,
speculate_update_v3,
speculate_update,
step_paddle,
step_system_cache,
update_inputs,
@@ -308,7 +308,7 @@ def post_process_normal(
def post_process_specualate(model_output, save_each_rank: bool = False, skip_save_output: bool = False):
""""""
speculate_update_v3(
speculate_update(
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.not_need_stop,

View File

@@ -252,12 +252,13 @@ class TokenProcessor:
def _compute_speculative_status(self):
# TODO(liuzichang): Supplement more statistics
interval = 50
interval = 10
if self.speculative_stats_step % interval == 0:
accept_ratio = 1 - self.total_step * 1.0 / self.number_of_output_tokens
spec_logger.info(
f"Speculate global accept ratio(Accept draft_tokens/Generated tokens): {accept_ratio}"
f" total step: {self.total_step}. total output token num: {self.number_of_output_tokens}"
f" avarage accept len: {self.number_of_output_tokens / self.total_step}"
)
if self.cfg.speculative_config.method in ["mtp"]:

View File

@@ -45,6 +45,10 @@ class Proposer(ABC):
self.max_model_len = self.parallel_config.max_model_len
self.speculative_method = self.speculative_config.method
self.max_draft_token_num = self.speculative_config.num_speculative_tokens
self.num_model_steps = self.speculative_config.num_model_steps
self.max_ngram_size = self.speculative_config.max_ngram_size
self.min_ngram_size = self.speculative_config.min_ngram_size
spec_logger.info(f"Speculate config: {self.speculative_config}")

View File

@@ -35,6 +35,7 @@ from fastdeploy.model_executor.ops.gpu import (
draft_model_update,
eagle_get_hidden_states,
eagle_get_self_hidden_states,
hybrid_mtp_ngram,
mtp_save_first_token,
mtp_step_paddle,
share_external_data,
@@ -57,6 +58,8 @@ class MTPProposer(Proposer):
self._update_cfg(main_model)
self._load_model()
self.main_model_inputs = main_model_inputs
self.mtp_strategy = self.speculative_config.mtp_strategy
self.hybrid_mode = self.mtp_strategy == "with_ngram" and self.max_draft_token_num > self.num_model_steps
# [mixed, prefill, decoder]
self.role = "mixed"
@@ -336,10 +339,11 @@ class MTPProposer(Proposer):
self.model_inputs["batch_drop"] = paddle.full(shape=[self.max_num_seqs, 1], fill_value=False, dtype="bool")
self.model_inputs["used_list_len"] = paddle.full(shape=[self.max_num_seqs], fill_value=0, dtype="int32")
if self.max_draft_token_num > 1:
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.full_like(
self.main_model_inputs["seq_lens_this_time"], fill_value=-1, dtype="int32"
)
self.input_ids_len = paddle.zeros(shape=[self.max_num_seqs, 1], dtype="int64").cpu()
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int):
"""
@@ -364,6 +368,7 @@ class MTPProposer(Proposer):
request = req_dicts[i]
idx = request.idx
length = len(request.prompt_token_ids)
self.input_ids_len[idx] = length
if req_dicts[i].disaggregate_info is not None and req_dicts[i].disaggregate_info["role"] == "decode":
length = len(request.prompt_token_ids)
@@ -460,6 +465,7 @@ class MTPProposer(Proposer):
self.model_inputs["step_idx"],
self.model_inputs["not_need_stop"],
self.model_inputs["batch_drop"],
self.model_inputs["pre_ids"],
self.main_model_inputs["accept_tokens"],
self.main_model_inputs["accept_num"],
self.main_model_inputs["seq_lens_this_time"],
@@ -469,7 +475,7 @@ class MTPProposer(Proposer):
self.main_model_inputs["stop_flags"],
self.main_model_inputs["is_block_step"],
self.main_model_inputs["draft_tokens"],
self.max_draft_token_num,
self.num_model_steps,
self.speculative_method in ["eagle", "mtp"],
self.role == "prefill",
)
@@ -483,7 +489,7 @@ class MTPProposer(Proposer):
self.main_model_inputs["accept_num"],
self.main_model_inputs["seq_lens_this_time"],
self.main_model_inputs["seq_lens_encoder"],
self.max_draft_token_num,
self.num_model_steps,
)
if isinstance(target_hidden_states, list):
target_hidden_states = target_hidden_states[0]
@@ -523,7 +529,7 @@ class MTPProposer(Proposer):
"""
Main process for MTP inference
"""
for substep in range(self.max_draft_token_num):
for substep in range(self.num_model_steps):
if self.model_inputs["not_need_stop"]:
self.model_inputs["substep"] = substep
# Remove padding
@@ -542,6 +548,7 @@ class MTPProposer(Proposer):
self.model_inputs["seq_lens_encoder"],
self.model_inputs["seq_lens_decoder"],
)
# Initialize forward meta data
self.model_inputs["ids_remove_padding"].copy_(ids_remove_padding, False)
self.model_inputs["batch_id_per_token"].copy_(batch_id_per_token, False)
@@ -567,7 +574,7 @@ class MTPProposer(Proposer):
eos_token_ids=self.model_inputs["eos_token_id"],
)
if self.max_draft_token_num > 1:
if self.num_model_steps > 1:
self.last_seq_lens_this_time = paddle.clone(self.model_inputs["seq_lens_this_time"])
model_output = self.model(
@@ -601,7 +608,7 @@ class MTPProposer(Proposer):
self._post_process(sampled_token_ids)
if substep != self.max_draft_token_num - 1:
if substep != self.num_model_steps - 1:
target_hidden_states = self._get_self_hidden_states(hidden_states)
def _get_self_hidden_states(self, hidden_states):
@@ -673,11 +680,37 @@ class MTPProposer(Proposer):
self.max_draft_token_num,
)
def _extend_draft_token_with_ngram_match(self):
# TODO(liuzichang): Optimize this Kernel to CUDA Kernel to reduce lantency
device = paddle.CUDAPinnedPlace()
draft_tokens = self.main_model_inputs["draft_tokens"].cpu()
seq_lens_this_time = self.main_model_inputs["seq_lens_this_time"].cpu()
seq_lens_decoder = self.model_inputs["seq_lens_decoder"].cpu()
hybrid_mtp_ngram(
self.model_inputs["input_ids"]._copy_to(device, True),
self.input_ids_len,
self.model_inputs["pre_ids"]._copy_to(device, True),
self.model_inputs["step_idx"].cpu(),
self.main_model_inputs["actual_draft_token_num"].cpu(),
draft_tokens,
seq_lens_this_time,
seq_lens_decoder,
self.model_inputs["max_dec_len"].cpu(),
self.max_ngram_size,
self.min_ngram_size,
self.max_draft_token_num,
)
self.main_model_inputs["draft_tokens"][:] = draft_tokens.cuda()
self.main_model_inputs["seq_lens_this_time"][:] = seq_lens_this_time.cuda()
def _run_impl(self, full_hidden_states):
""""""
target_hidden_states = self._prepare_inputs(full_hidden_states)
self._propose(target_hidden_states=target_hidden_states)
self._update_status()
if self.hybrid_mode:
self._extend_draft_token_with_ngram_match()
def is_chunk_prefill_enabled(self):
""""""

View File

@@ -0,0 +1,75 @@
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import hybrid_mtp_ngram
class TestNgramMatchMixed(unittest.TestCase):
def setUp(self):
self.max_bsz = 2
self.max_draft_tokens = 5
self.max_len = 32
self.max_dec_len = 10
self.max_ngram_size = 5
self.min_ngram_size = 2
# 初始化输入 tensor
self.input_ids = paddle.full(shape=[self.max_bsz, self.max_len], fill_value=-1, dtype="int64").cpu()
self.input_ids_len = paddle.full(shape=[self.max_bsz, 1], fill_value=-1, dtype="int64").cpu()
self.pre_ids = paddle.full(shape=[self.max_bsz, self.max_len], fill_value=-1, dtype="int64").cpu()
self.step_idx = paddle.full(shape=[self.max_bsz, 1], fill_value=-1, dtype="int64").cpu()
self.draft_token_num = paddle.full(shape=[self.max_bsz, 1], fill_value=-1, dtype="int32").cpu()
self.draft_tokens = paddle.full(
shape=[self.max_bsz, self.max_draft_tokens + 1],
fill_value=-1,
dtype="int64",
).cpu()
self.seq_lens_this_time = paddle.full(shape=[self.max_bsz, 1], fill_value=-1, dtype="int32").cpu()
self.seq_lens_decoder = paddle.full(shape=[self.max_bsz, 1], fill_value=-1, dtype="int32").cpu()
self.max_dec_len = paddle.full(
shape=[self.max_bsz, 1],
fill_value=self.max_dec_len,
dtype="int64",
).cpu()
# 设置具体数据
self.input_ids[:, :10] = np.arange(0, 10)
self.input_ids_len[:] = 10
pre_ids_np = np.array([10, 9, 8, 7, 6, 10, 9, 8, 7], dtype="int32")
self.pre_ids[:, : pre_ids_np.shape[0]] = pre_ids_np
self.step_idx[:] = 8
self.draft_token_num[:] = 5
self.draft_tokens[:, :2] = np.array([8, 7])
self.seq_lens_this_time[:] = 2
self.seq_lens_decoder[:] = 12
self.max_dec_len[:] = 512
# 期望结果
self.ref_seq_lens_this_time = np.array([[6], [6]], dtype="int32")
self.ref_draft_tokens = np.array([[8, 7, 6, 10, 9, 8], [8, 7, 6, 10, 9, 8]], dtype="int64")
def test_ngram_match_mixed(self):
hybrid_mtp_ngram(
self.input_ids,
self.input_ids_len,
self.pre_ids,
self.step_idx,
self.draft_token_num,
self.draft_tokens,
self.seq_lens_this_time,
self.seq_lens_decoder,
self.max_dec_len,
self.max_ngram_size,
self.min_ngram_size,
self.max_draft_tokens,
)
np.testing.assert_allclose(self.seq_lens_this_time.numpy(), self.ref_seq_lens_this_time)
np.testing.assert_allclose(self.draft_tokens.numpy(), self.ref_draft_tokens)
if __name__ == "__main__":
unittest.main()