mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Update uie benchmark output
This commit is contained in:
@@ -7,10 +7,6 @@ import json
|
||||
|
||||
import fastdeploy as fd
|
||||
from fastdeploy.text import UIEModel, SchemaLanguage
|
||||
import pynvml
|
||||
import psutil
|
||||
import GPUtil
|
||||
import multiprocessing
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
@@ -44,23 +40,23 @@ def parse_arguments():
|
||||
type=int,
|
||||
default=128,
|
||||
help="The max length of sequence.")
|
||||
parser.add_argument(
|
||||
"--log_interval",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The interval of logging.")
|
||||
parser.add_argument(
|
||||
"--cpu_num_threads",
|
||||
type=int,
|
||||
default=1,
|
||||
default=8,
|
||||
help="The number of threads when inferring on cpu.")
|
||||
parser.add_argument(
|
||||
"--use_fp16",
|
||||
"--enable_trt_fp16",
|
||||
type=distutils.util.strtobool,
|
||||
default=False,
|
||||
help="Use FP16 mode")
|
||||
help="whether enable fp16 in trt backend")
|
||||
parser.add_argument(
|
||||
"--epoch", type=int, default=1, help="The epoch of test")
|
||||
parser.add_argument(
|
||||
"--enable_collect_memory_info",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="whether enable collect memory info")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
@@ -103,37 +99,116 @@ def build_option(args):
|
||||
min_shape=[1, 1],
|
||||
opt_shape=[args.batch_size, args.max_length // 2],
|
||||
max_shape=[args.batch_size, args.max_length])
|
||||
if args.use_fp16:
|
||||
if args.enable_trt_fp16:
|
||||
option.enable_trt_fp16()
|
||||
trt_file = trt_file + ".fp16"
|
||||
option.set_trt_cache_file(trt_file)
|
||||
return option
|
||||
|
||||
|
||||
def get_current_memory_mb(gpu_id=None):
|
||||
pid = os.getpid()
|
||||
p = psutil.Process(pid)
|
||||
info = p.memory_full_info()
|
||||
cpu_mem = info.uss / 1024. / 1024.
|
||||
gpu_mem = 0
|
||||
if gpu_id is not None:
|
||||
pynvml.nvmlInit()
|
||||
handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
|
||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||||
gpu_mem = meminfo.used / 1024. / 1024.
|
||||
return cpu_mem, gpu_mem
|
||||
class StatBase(object):
|
||||
"""StatBase"""
|
||||
nvidia_smi_path = "nvidia-smi"
|
||||
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||
'memory.free', 'memory.used', 'utilization.gpu',
|
||||
'utilization.memory')
|
||||
nu_opt = ',nounits'
|
||||
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||
|
||||
|
||||
def get_current_gputil(gpu_id):
|
||||
GPUs = GPUtil.getGPUs()
|
||||
gpu_load = GPUs[gpu_id].load
|
||||
return gpu_load
|
||||
class Monitor(StatBase):
|
||||
"""Monitor"""
|
||||
|
||||
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||
self.result = {}
|
||||
self.gpu_id = gpu_id
|
||||
self.use_gpu = use_gpu
|
||||
self.interval = interval
|
||||
self.cpu_stat_q = multiprocessing.Queue()
|
||||
|
||||
def sample_gpuutil(gpu_id, gpu_utilization=[]):
|
||||
while True:
|
||||
gpu_utilization.append(get_current_gputil(gpu_id))
|
||||
time.sleep(0.01)
|
||||
def start(self):
|
||||
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||
StatBase.nu_opt)
|
||||
if self.use_gpu:
|
||||
self.gpu_stat_worker = subprocess.Popen(
|
||||
cmd,
|
||||
stderr=subprocess.STDOUT,
|
||||
stdout=subprocess.PIPE,
|
||||
shell=True,
|
||||
close_fds=True,
|
||||
preexec_fn=os.setsid)
|
||||
# cpu stat
|
||||
pid = os.getpid()
|
||||
self.cpu_stat_worker = multiprocessing.Process(
|
||||
target=self.cpu_stat_func,
|
||||
args=(self.cpu_stat_q, pid, self.interval))
|
||||
self.cpu_stat_worker.start()
|
||||
|
||||
def stop(self):
|
||||
try:
|
||||
if self.use_gpu:
|
||||
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||
# os.killpg(p.pid, signal.SIGTERM)
|
||||
self.cpu_stat_worker.terminate()
|
||||
self.cpu_stat_worker.join(timeout=0.01)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return
|
||||
|
||||
# gpu
|
||||
if self.use_gpu:
|
||||
lines = self.gpu_stat_worker.stdout.readlines()
|
||||
lines = [
|
||||
line.strip().decode("utf-8") for line in lines
|
||||
if line.strip() != ''
|
||||
]
|
||||
gpu_info_list = [{
|
||||
k: v
|
||||
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||
} for line in lines]
|
||||
if len(gpu_info_list) == 0:
|
||||
return
|
||||
result = gpu_info_list[0]
|
||||
for item in gpu_info_list:
|
||||
for k in item.keys():
|
||||
if k not in ["name", "uuid", "timestamp"]:
|
||||
result[k] = max(int(result[k]), int(item[k]))
|
||||
else:
|
||||
result[k] = max(result[k], item[k])
|
||||
self.result['gpu'] = result
|
||||
|
||||
# cpu
|
||||
cpu_result = {}
|
||||
if self.cpu_stat_q.qsize() > 0:
|
||||
cpu_result = {
|
||||
k: v
|
||||
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||
}
|
||||
while not self.cpu_stat_q.empty():
|
||||
item = {
|
||||
k: v
|
||||
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||
}
|
||||
for k in StatBase.cpu_keys:
|
||||
cpu_result[k] = max(cpu_result[k], item[k])
|
||||
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||
self.result['cpu'] = cpu_result
|
||||
|
||||
def output(self):
|
||||
return self.result
|
||||
|
||||
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||
"""cpu stat function"""
|
||||
stat_info = psutil.Process(pid)
|
||||
while True:
|
||||
# pid = os.getpid()
|
||||
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||
1024.0 / 1024.0, 4)
|
||||
q.put([cpu_util, mem_util, mem_use])
|
||||
time.sleep(interval)
|
||||
return
|
||||
|
||||
|
||||
def get_dataset(data_path, max_seq_len=512):
|
||||
@@ -154,32 +229,6 @@ def get_dataset(data_path, max_seq_len=512):
|
||||
return json_lines
|
||||
|
||||
|
||||
def run_inference(ds, uie, epoch=1, warmup_steps=10):
|
||||
for j, sample in enumerate(ds):
|
||||
if j > warmup_steps:
|
||||
break
|
||||
uie.set_schema([sample['prompt']])
|
||||
result = uie.predict([sample['content']])
|
||||
print(f"Run {warmup_steps} steps to warm up")
|
||||
start = time.time()
|
||||
for ep in range(epoch):
|
||||
curr_start = time.time()
|
||||
for i, sample in enumerate(ds):
|
||||
uie.set_schema([sample['prompt']])
|
||||
result = uie.predict([sample['content']])
|
||||
print(
|
||||
f"Epoch {ep} average time = {(time.time() - curr_start) * 1000.0 / (len(ds)):.4f} ms"
|
||||
)
|
||||
end = time.time()
|
||||
runtime_statis = uie.print_statis_info_of_runtime()
|
||||
print(f"Final:")
|
||||
print(runtime_statis)
|
||||
print(
|
||||
f"Total average time = {(end - start) * 1000.0 / (len(ds) * epoch):.4f} ms"
|
||||
)
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments()
|
||||
runtime_option = build_option(args)
|
||||
@@ -187,6 +236,25 @@ if __name__ == '__main__':
|
||||
param_path = os.path.join(args.model_dir, "inference.pdiparams")
|
||||
vocab_path = os.path.join(args.model_dir, "vocab.txt")
|
||||
|
||||
gpu_id = args.device_id
|
||||
enable_collect_memory_info = args.enable_collect_memory_info
|
||||
dump_result = dict()
|
||||
end2end_statis = list()
|
||||
cpu_mem = list()
|
||||
gpu_mem = list()
|
||||
gpu_util = list()
|
||||
if args.device == "cpu":
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_" + \
|
||||
args.device + "_" + str(args.cpu_num_thread) + ".txt"
|
||||
else:
|
||||
if args.enable_trt_fp16:
|
||||
file_path = args.model_dir + "_model_" + \
|
||||
args.backend + "_fp16_" + args.device + ".txt"
|
||||
else:
|
||||
file_path = args.model_dir + "_model_" + args.backend + "_" + args.device + ".txt"
|
||||
f = open(file_path, "w")
|
||||
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
|
||||
|
||||
ds = get_dataset(args.data_path)
|
||||
schema = ["时间"]
|
||||
uie = UIEModel(
|
||||
@@ -195,9 +263,59 @@ if __name__ == '__main__':
|
||||
vocab_path,
|
||||
position_prob=0.5,
|
||||
max_length=args.max_length,
|
||||
batch_size=args.batch_size,
|
||||
schema=schema,
|
||||
runtime_option=runtime_option,
|
||||
schema_language=SchemaLanguage.ZH)
|
||||
|
||||
uie.enable_record_time_of_runtime()
|
||||
run_inference(ds, uie, args.epoch)
|
||||
try:
|
||||
if enable_collect_memory_info:
|
||||
import multiprocessing
|
||||
import subprocess
|
||||
import psutil
|
||||
import signal
|
||||
import cpuinfo
|
||||
enable_gpu = args.device == "gpu"
|
||||
monitor = Monitor(enable_gpu, gpu_id)
|
||||
monitor.start()
|
||||
uie.enable_record_time_of_runtime()
|
||||
|
||||
for ep in range(args.epoch):
|
||||
for i, sample in enumerate(ds):
|
||||
curr_start = time.time()
|
||||
uie.set_schema([sample['prompt']])
|
||||
result = uie.predict([sample['content']])
|
||||
end2end_statis.append(time.time() - curr_start)
|
||||
runtime_statis = uie.print_statis_info_of_runtime()
|
||||
|
||||
warmup_iter = args.epoch * len(ds) // 5
|
||||
|
||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||
if enable_collect_memory_info:
|
||||
monitor.stop()
|
||||
mem_info = monitor.output()
|
||||
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||
'memory.used'] if 'cpu' in mem_info else 0
|
||||
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||
'memory.used'] if 'gpu' in mem_info else 0
|
||||
dump_result["gpu_util"] = mem_info['gpu'][
|
||||
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||
|
||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||
|
||||
time_cost_str = f"Runtime(ms): {dump_result['runtime']}\n" \
|
||||
f"End2End(ms): {dump_result['end2end']}\n"
|
||||
f.writelines(time_cost_str)
|
||||
print(time_cost_str)
|
||||
|
||||
if enable_collect_memory_info:
|
||||
mem_info_str = f"cpu_rss_mb: {dump_result['cpu_rss_mb']}\n" \
|
||||
f"gpu_rss_mb: {dump_result['gpu_rss_mb']}\n" \
|
||||
f"gpu_util: {dump_result['gpu_util']}\n"
|
||||
f.writelines(mem_info_str)
|
||||
print(mem_info_str)
|
||||
except:
|
||||
f.writelines("!!!!!Infer Failed\n")
|
||||
|
||||
f.close()
|
||||
|
@@ -1,22 +1,27 @@
|
||||
# wget https://bj.bcebos.com/fastdeploy/benchmark/uie/reimbursement_form_data.txt
|
||||
# wget https://bj.bcebos.com/fastdeploy/models/uie/uie-base.tgz
|
||||
# tar xvfz uie-base.tgz
|
||||
|
||||
DEVICE_ID=0
|
||||
|
||||
echo "[FastDeploy] Running UIE benchmark..."
|
||||
|
||||
# GPU
|
||||
echo "-------------------------------GPU Benchmark---------------------------------------"
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device gpu
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device gpu
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device gpu --use_fp16 False
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device gpu --use_fp16 False
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device gpu --use_fp16 True
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device gpu --use_fp16 True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device_id $DEVICE_ID --device gpu --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device_id $DEVICE_ID --device gpu --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 False --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 False --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 True --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 True --enable_collect_memory_info True
|
||||
echo "-----------------------------------------------------------------------------------"
|
||||
|
||||
# CPU
|
||||
echo "-------------------------------CPU Benchmark---------------------------------------"
|
||||
for cpu_num_threads in 1 2 4 8 16;
|
||||
do
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device cpu --cpu_num_threads ${cpu_num_threads}
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device cpu --cpu_num_threads ${cpu_num_threads}
|
||||
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend openvino --device cpu --cpu_num_threads ${cpu_num_threads}
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device cpu --cpu_num_threads ${cpu_num_threads} --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device cpu --cpu_num_threads ${cpu_num_threads} --enable_collect_memory_info True
|
||||
python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend openvino --device cpu --cpu_num_threads ${cpu_num_threads} --enable_collect_memory_info True
|
||||
done
|
||||
echo "-----------------------------------------------------------------------------------"
|
||||
|
Reference in New Issue
Block a user