Update uie benchmark output

This commit is contained in:
zhoushunjie
2022-12-29 10:29:32 +00:00
parent 4f7233c11f
commit 51e346ea09
2 changed files with 193 additions and 70 deletions

View File

@@ -7,10 +7,6 @@ import json
import fastdeploy as fd import fastdeploy as fd
from fastdeploy.text import UIEModel, SchemaLanguage from fastdeploy.text import UIEModel, SchemaLanguage
import pynvml
import psutil
import GPUtil
import multiprocessing
def parse_arguments(): def parse_arguments():
@@ -44,23 +40,23 @@ def parse_arguments():
type=int, type=int,
default=128, default=128,
help="The max length of sequence.") help="The max length of sequence.")
parser.add_argument(
"--log_interval",
type=int,
default=10,
help="The interval of logging.")
parser.add_argument( parser.add_argument(
"--cpu_num_threads", "--cpu_num_threads",
type=int, type=int,
default=1, default=8,
help="The number of threads when inferring on cpu.") help="The number of threads when inferring on cpu.")
parser.add_argument( parser.add_argument(
"--use_fp16", "--enable_trt_fp16",
type=distutils.util.strtobool, type=distutils.util.strtobool,
default=False, default=False,
help="Use FP16 mode") help="whether enable fp16 in trt backend")
parser.add_argument( parser.add_argument(
"--epoch", type=int, default=1, help="The epoch of test") "--epoch", type=int, default=1, help="The epoch of test")
parser.add_argument(
"--enable_collect_memory_info",
type=ast.literal_eval,
default=False,
help="whether enable collect memory info")
return parser.parse_args() return parser.parse_args()
@@ -103,37 +99,116 @@ def build_option(args):
min_shape=[1, 1], min_shape=[1, 1],
opt_shape=[args.batch_size, args.max_length // 2], opt_shape=[args.batch_size, args.max_length // 2],
max_shape=[args.batch_size, args.max_length]) max_shape=[args.batch_size, args.max_length])
if args.use_fp16: if args.enable_trt_fp16:
option.enable_trt_fp16() option.enable_trt_fp16()
trt_file = trt_file + ".fp16" trt_file = trt_file + ".fp16"
option.set_trt_cache_file(trt_file) option.set_trt_cache_file(trt_file)
return option return option
def get_current_memory_mb(gpu_id=None): class StatBase(object):
"""StatBase"""
nvidia_smi_path = "nvidia-smi"
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
'memory.free', 'memory.used', 'utilization.gpu',
'utilization.memory')
nu_opt = ',nounits'
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
class Monitor(StatBase):
"""Monitor"""
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
self.result = {}
self.gpu_id = gpu_id
self.use_gpu = use_gpu
self.interval = interval
self.cpu_stat_q = multiprocessing.Queue()
def start(self):
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
StatBase.nu_opt)
if self.use_gpu:
self.gpu_stat_worker = subprocess.Popen(
cmd,
stderr=subprocess.STDOUT,
stdout=subprocess.PIPE,
shell=True,
close_fds=True,
preexec_fn=os.setsid)
# cpu stat
pid = os.getpid() pid = os.getpid()
p = psutil.Process(pid) self.cpu_stat_worker = multiprocessing.Process(
info = p.memory_full_info() target=self.cpu_stat_func,
cpu_mem = info.uss / 1024. / 1024. args=(self.cpu_stat_q, pid, self.interval))
gpu_mem = 0 self.cpu_stat_worker.start()
if gpu_id is not None:
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
gpu_mem = meminfo.used / 1024. / 1024.
return cpu_mem, gpu_mem
def stop(self):
try:
if self.use_gpu:
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
# os.killpg(p.pid, signal.SIGTERM)
self.cpu_stat_worker.terminate()
self.cpu_stat_worker.join(timeout=0.01)
except Exception as e:
print(e)
return
def get_current_gputil(gpu_id): # gpu
GPUs = GPUtil.getGPUs() if self.use_gpu:
gpu_load = GPUs[gpu_id].load lines = self.gpu_stat_worker.stdout.readlines()
return gpu_load lines = [
line.strip().decode("utf-8") for line in lines
if line.strip() != ''
]
gpu_info_list = [{
k: v
for k, v in zip(StatBase.gpu_keys, line.split(', '))
} for line in lines]
if len(gpu_info_list) == 0:
return
result = gpu_info_list[0]
for item in gpu_info_list:
for k in item.keys():
if k not in ["name", "uuid", "timestamp"]:
result[k] = max(int(result[k]), int(item[k]))
else:
result[k] = max(result[k], item[k])
self.result['gpu'] = result
# cpu
cpu_result = {}
if self.cpu_stat_q.qsize() > 0:
cpu_result = {
k: v
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
}
while not self.cpu_stat_q.empty():
item = {
k: v
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
}
for k in StatBase.cpu_keys:
cpu_result[k] = max(cpu_result[k], item[k])
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
self.result['cpu'] = cpu_result
def sample_gpuutil(gpu_id, gpu_utilization=[]): def output(self):
return self.result
def cpu_stat_func(self, q, pid, interval=0.0):
"""cpu stat function"""
stat_info = psutil.Process(pid)
while True: while True:
gpu_utilization.append(get_current_gputil(gpu_id)) # pid = os.getpid()
time.sleep(0.01) cpu_util, mem_util, mem_use = stat_info.cpu_percent(
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
1024.0 / 1024.0, 4)
q.put([cpu_util, mem_util, mem_use])
time.sleep(interval)
return
def get_dataset(data_path, max_seq_len=512): def get_dataset(data_path, max_seq_len=512):
@@ -154,32 +229,6 @@ def get_dataset(data_path, max_seq_len=512):
return json_lines return json_lines
def run_inference(ds, uie, epoch=1, warmup_steps=10):
for j, sample in enumerate(ds):
if j > warmup_steps:
break
uie.set_schema([sample['prompt']])
result = uie.predict([sample['content']])
print(f"Run {warmup_steps} steps to warm up")
start = time.time()
for ep in range(epoch):
curr_start = time.time()
for i, sample in enumerate(ds):
uie.set_schema([sample['prompt']])
result = uie.predict([sample['content']])
print(
f"Epoch {ep} average time = {(time.time() - curr_start) * 1000.0 / (len(ds)):.4f} ms"
)
end = time.time()
runtime_statis = uie.print_statis_info_of_runtime()
print(f"Final:")
print(runtime_statis)
print(
f"Total average time = {(end - start) * 1000.0 / (len(ds) * epoch):.4f} ms"
)
print()
if __name__ == '__main__': if __name__ == '__main__':
args = parse_arguments() args = parse_arguments()
runtime_option = build_option(args) runtime_option = build_option(args)
@@ -187,6 +236,25 @@ if __name__ == '__main__':
param_path = os.path.join(args.model_dir, "inference.pdiparams") param_path = os.path.join(args.model_dir, "inference.pdiparams")
vocab_path = os.path.join(args.model_dir, "vocab.txt") vocab_path = os.path.join(args.model_dir, "vocab.txt")
gpu_id = args.device_id
enable_collect_memory_info = args.enable_collect_memory_info
dump_result = dict()
end2end_statis = list()
cpu_mem = list()
gpu_mem = list()
gpu_util = list()
if args.device == "cpu":
file_path = args.model_dir + "_model_" + args.backend + "_" + \
args.device + "_" + str(args.cpu_num_thread) + ".txt"
else:
if args.enable_trt_fp16:
file_path = args.model_dir + "_model_" + \
args.backend + "_fp16_" + args.device + ".txt"
else:
file_path = args.model_dir + "_model_" + args.backend + "_" + args.device + ".txt"
f = open(file_path, "w")
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
ds = get_dataset(args.data_path) ds = get_dataset(args.data_path)
schema = ["时间"] schema = ["时间"]
uie = UIEModel( uie = UIEModel(
@@ -195,9 +263,59 @@ if __name__ == '__main__':
vocab_path, vocab_path,
position_prob=0.5, position_prob=0.5,
max_length=args.max_length, max_length=args.max_length,
batch_size=args.batch_size,
schema=schema, schema=schema,
runtime_option=runtime_option, runtime_option=runtime_option,
schema_language=SchemaLanguage.ZH) schema_language=SchemaLanguage.ZH)
try:
if enable_collect_memory_info:
import multiprocessing
import subprocess
import psutil
import signal
import cpuinfo
enable_gpu = args.device == "gpu"
monitor = Monitor(enable_gpu, gpu_id)
monitor.start()
uie.enable_record_time_of_runtime() uie.enable_record_time_of_runtime()
run_inference(ds, uie, args.epoch)
for ep in range(args.epoch):
for i, sample in enumerate(ds):
curr_start = time.time()
uie.set_schema([sample['prompt']])
result = uie.predict([sample['content']])
end2end_statis.append(time.time() - curr_start)
runtime_statis = uie.print_statis_info_of_runtime()
warmup_iter = args.epoch * len(ds) // 5
end2end_statis_repeat = end2end_statis[warmup_iter:]
if enable_collect_memory_info:
monitor.stop()
mem_info = monitor.output()
dump_result["cpu_rss_mb"] = mem_info['cpu'][
'memory.used'] if 'cpu' in mem_info else 0
dump_result["gpu_rss_mb"] = mem_info['gpu'][
'memory.used'] if 'gpu' in mem_info else 0
dump_result["gpu_util"] = mem_info['gpu'][
'utilization.gpu'] if 'gpu' in mem_info else 0
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
time_cost_str = f"Runtime(ms): {dump_result['runtime']}\n" \
f"End2End(ms): {dump_result['end2end']}\n"
f.writelines(time_cost_str)
print(time_cost_str)
if enable_collect_memory_info:
mem_info_str = f"cpu_rss_mb: {dump_result['cpu_rss_mb']}\n" \
f"gpu_rss_mb: {dump_result['gpu_rss_mb']}\n" \
f"gpu_util: {dump_result['gpu_util']}\n"
f.writelines(mem_info_str)
print(mem_info_str)
except:
f.writelines("!!!!!Infer Failed\n")
f.close()

View File

@@ -1,22 +1,27 @@
# wget https://bj.bcebos.com/fastdeploy/benchmark/uie/reimbursement_form_data.txt # wget https://bj.bcebos.com/fastdeploy/benchmark/uie/reimbursement_form_data.txt
# wget https://bj.bcebos.com/fastdeploy/models/uie/uie-base.tgz # wget https://bj.bcebos.com/fastdeploy/models/uie/uie-base.tgz
# tar xvfz uie-base.tgz # tar xvfz uie-base.tgz
DEVICE_ID=0
echo "[FastDeploy] Running UIE benchmark..."
# GPU # GPU
echo "-------------------------------GPU Benchmark---------------------------------------" echo "-------------------------------GPU Benchmark---------------------------------------"
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device gpu python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device_id $DEVICE_ID --device gpu --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device gpu python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device_id $DEVICE_ID --device gpu --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device gpu --use_fp16 False python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 False --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device gpu --use_fp16 False python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 False --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device gpu --use_fp16 True python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp-trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 True --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device gpu --use_fp16 True python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend trt --device_id $DEVICE_ID --device gpu --enable_trt_fp16 True --enable_collect_memory_info True
echo "-----------------------------------------------------------------------------------" echo "-----------------------------------------------------------------------------------"
# CPU # CPU
echo "-------------------------------CPU Benchmark---------------------------------------" echo "-------------------------------CPU Benchmark---------------------------------------"
for cpu_num_threads in 1 2 4 8 16; for cpu_num_threads in 1 2 4 8 16;
do do
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device cpu --cpu_num_threads ${cpu_num_threads} python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend pp --device cpu --cpu_num_threads ${cpu_num_threads} --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device cpu --cpu_num_threads ${cpu_num_threads} python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend ort --device cpu --cpu_num_threads ${cpu_num_threads} --enable_collect_memory_info True
python benchmark_uie.py --log_interval 100 --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend openvino --device cpu --cpu_num_threads ${cpu_num_threads} python benchmark_uie.py --epoch 5 --model_dir uie-base --data_path reimbursement_form_data.txt --backend openvino --device cpu --cpu_num_threads ${cpu_num_threads} --enable_collect_memory_info True
done done
echo "-----------------------------------------------------------------------------------" echo "-----------------------------------------------------------------------------------"