[Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)

* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
thunder95
2023-04-21 10:48:05 +08:00
committed by GitHub
parent f3d44785c4
commit 51be3fea78
31 changed files with 1389 additions and 6 deletions

View File

@@ -0,0 +1,78 @@
import cv2
import os
import fastdeploy as fd
print(111)
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
default=None,
help="Path of PaddleDetection model directory")
parser.add_argument(
"--image", default=None, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'kunlunxin', 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
return option
args = parse_arguments()
if args.model_dir is None:
model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco')
else:
model_dir = args.model_dir
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_option(args)
print(args)
model = fd.vision.detection.PPYOLOER(
model_file, params_file, config_file, runtime_option=runtime_option)
print(2222)
# 预测图片检测结果
if args.image is None:
image = fd.utils.get_detection_test_image()
else:
image = args.image
im = cv2.imread(image)
result = model.predict(im)
print(result)
# 预测结果可视化
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")