mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[CP2.2] Machete support group scale & wint8 & v1 loader (#4166)
* support v1 loader for machete (#3999) * [Optimize] Support WINT8 and group scale for Machete (#3905) * [Optimize] Machete using group scale default (#4121)
This commit is contained in:
@@ -30,10 +30,12 @@ paddle::Tensor mm(paddle::Tensor const& A, paddle::Tensor const& B,
|
||||
std::optional<paddle::Tensor> const& maybe_token_scales,
|
||||
std::string maybe_schedule) {
|
||||
machete::ScalarType const b_type = machete::ScalarType::from_id(b_type_id);
|
||||
std::optional<int64_t> maybe_group_size_opt;
|
||||
std::optional<int64_t> maybe_group_size_opt = std::optional<int64_t>(maybe_group_size);
|
||||
std::optional<std::string> maybe_schedule_opt;
|
||||
if (maybe_schedule == "") {
|
||||
maybe_schedule_opt = std::nullopt;
|
||||
} else {
|
||||
maybe_schedule_opt = std::optional<std::string>(maybe_schedule);
|
||||
}
|
||||
return machete::mm_dispatch({.A = A,
|
||||
.B = B,
|
||||
@@ -63,6 +65,8 @@ std::vector<paddle::Tensor> MacheteMMKernel(
|
||||
paddle::DataType maybe_out_type;
|
||||
if (b_type_str == "uint4b8") {
|
||||
b_type_id = machete::kU4B8.id();
|
||||
} else if (b_type_str == "uint8b128") {
|
||||
b_type_id = machete::kU8B128.id();
|
||||
} else {
|
||||
PADDLE_ENFORCE(false, "b_type_str not supported!");
|
||||
}
|
||||
|
@@ -51,6 +51,8 @@ std::vector<paddle::Tensor> MachetePrepackBKernel(
|
||||
|
||||
if (b_type_str == "uint4b8") {
|
||||
b_type_id = machete::kU4B8.id();
|
||||
} else if (b_type_str == "uint8b128") {
|
||||
b_type_id = machete::kU8B128.id();
|
||||
} else {
|
||||
PADDLE_ENFORCE(false, "b_type_str not supported!");
|
||||
}
|
||||
|
@@ -85,7 +85,7 @@ def quantize_weights(
|
||||
w_s: Scales (None if `group_size` is None).
|
||||
"""
|
||||
assert paddle.is_floating_point(w), "w must be float type"
|
||||
assert quant_type in ["uint4", "uint4b8"], "only support quant_type = uint4, uint4b8"
|
||||
assert quant_type in ["uint4b8", "uint8b128"], "only support quant_type = uint4b8, uint8b128"
|
||||
|
||||
orig_device = w.place
|
||||
size_k, size_n = w.shape
|
||||
@@ -103,8 +103,12 @@ def quantize_weights(
|
||||
max_val = paddle.max(w, axis=0, keepdim=True)
|
||||
min_val = paddle.min(w, axis=0, keepdim=True)
|
||||
|
||||
if quant_type == "uint4b8":
|
||||
max_q_val = float(7.0)
|
||||
min_q_val = float(-8.0)
|
||||
else:
|
||||
max_q_val = float(127.0)
|
||||
min_q_val = float(-128.0)
|
||||
|
||||
w_s = paddle.ones([1], dtype=paddle.float32) # unscaled case
|
||||
|
||||
@@ -124,6 +128,8 @@ def quantize_weights(
|
||||
# w_q += quant_type.bias
|
||||
if quant_type == "uint4b8":
|
||||
w_q += 8
|
||||
else:
|
||||
w_q += 128
|
||||
|
||||
# Restore original shapes
|
||||
if group_size is not None and group_size < size_k:
|
||||
@@ -131,11 +137,11 @@ def quantize_weights(
|
||||
def reshape_w(w_tensor):
|
||||
w_tensor = w_tensor.reshape([group_size, -1, size_n])
|
||||
w_tensor = w_tensor.transpose([1, 0, 2])
|
||||
w_tensor = w_tensor.reshape([size_k, size_n])
|
||||
w_tensor = w_tensor.reshape([size_k, size_n]).contiguous()
|
||||
return w_tensor
|
||||
|
||||
w_q = reshape_w(w_q)
|
||||
w_s = w_s.reshape([-1, size_n])
|
||||
w_s = w_s.reshape([-1, size_n]).contiguous()
|
||||
|
||||
# Move tensors back to original device
|
||||
w_q = w_q.to(orig_device)
|
||||
@@ -153,7 +159,8 @@ def machete_quantize_and_pack(
|
||||
group_size: int = -1,
|
||||
):
|
||||
w_q, w_s = quantize_weights(w, group_size, quant_type=quant_type)
|
||||
w_q = pack_rows(w_q, 4, *w_q.shape)
|
||||
num_bits = 4 if quant_type == "uint4b8" else 8
|
||||
w_q = pack_rows(w_q, num_bits, *w_q.shape)
|
||||
w_q_col = w_q.transpose([1, 0]).contiguous() # convert to col major
|
||||
w_q_prepack = machete_prepack_B(
|
||||
w_q_col,
|
||||
|
@@ -141,8 +141,7 @@ class WeightOnlyConfig(QuantConfigBase):
|
||||
)
|
||||
|
||||
if (
|
||||
self.name() == "wint4"
|
||||
and _ENABLE_MACHETE
|
||||
_ENABLE_MACHETE
|
||||
and envs.FD_USE_MACHETE == "1"
|
||||
and layer.weight_shape[1]
|
||||
and layer.weight_shape[1] % 128 == 0
|
||||
@@ -218,6 +217,15 @@ class WeightOnlyLinearMethod(QuantMethodBase):
|
||||
layer.weight,
|
||||
quant_attrs,
|
||||
)
|
||||
else:
|
||||
if isinstance(self, MacheteWeightOnlyLinearMethod):
|
||||
# Using group scale for machete, group size is 128
|
||||
weight_scale_shape = [(layer.weight_shape[0] + 127) // 128, layer.weight_shape[1]]
|
||||
if self.quant_config.name() == "wint4":
|
||||
layer.weight_shape[0] //= 8
|
||||
else:
|
||||
layer.weight_shape[0] //= 4
|
||||
layer.weight_dtype = "int32"
|
||||
else:
|
||||
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
|
||||
weight_scale_shape = [layer.weight_shape[1]]
|
||||
@@ -225,6 +233,7 @@ class WeightOnlyLinearMethod(QuantMethodBase):
|
||||
if self.quant_config.name() == "wint4":
|
||||
layer.weight_shape[0] //= 2
|
||||
layer.weight_dtype = "int8"
|
||||
|
||||
layer.weight = layer.create_parameter(
|
||||
shape=layer.weight_shape,
|
||||
dtype=layer.weight_dtype,
|
||||
@@ -260,6 +269,19 @@ class WeightOnlyLinearMethod(QuantMethodBase):
|
||||
def process_weights_after_loading(self, layer) -> None:
|
||||
if not layer.fd_config.load_config.load_choices == "default_v1":
|
||||
return
|
||||
if isinstance(self, MacheteWeightOnlyLinearMethod):
|
||||
from fastdeploy.model_executor.layers.quantization.ops import (
|
||||
machete_quantize_and_pack,
|
||||
)
|
||||
|
||||
# Using group scale for machete, group size is 128
|
||||
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
|
||||
w=layer.weight,
|
||||
atype=layer._dtype,
|
||||
quant_type="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
|
||||
group_size=128,
|
||||
)
|
||||
else:
|
||||
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
|
||||
layer.weight,
|
||||
algo=self.quant_config.algo,
|
||||
@@ -270,7 +292,7 @@ class WeightOnlyLinearMethod(QuantMethodBase):
|
||||
|
||||
layer.weight = layer.create_parameter(
|
||||
shape=quanted_weight_tensor.shape,
|
||||
dtype="int8",
|
||||
dtype="int8" if not isinstance(self, MacheteWeightOnlyLinearMethod) else "int32",
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
@@ -361,32 +383,6 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
|
||||
) -> None:
|
||||
super().__init__(quant_config)
|
||||
|
||||
def create_weights(self, layer, **extra_weight_attrs):
|
||||
|
||||
assert layer.bias is None, "Machete weight only linear method does not support bias."
|
||||
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
|
||||
|
||||
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
|
||||
weight_scale_shape = [1, layer.weight_shape[1]]
|
||||
|
||||
# layer.weight_shape.reverse()
|
||||
if self.quant_config.name() == "wint4":
|
||||
layer.weight_shape[0] //= 8
|
||||
layer.weight_dtype = "int32"
|
||||
|
||||
layer.weight = layer.create_parameter(
|
||||
shape=layer.weight_shape,
|
||||
dtype=layer.weight_dtype,
|
||||
is_bias=False,
|
||||
default_initializer=paddle.nn.initializer.Constant(0),
|
||||
)
|
||||
|
||||
layer.weight_scale = layer.create_parameter(
|
||||
shape=weight_scale_shape,
|
||||
dtype=layer._dtype,
|
||||
is_bias=False,
|
||||
)
|
||||
|
||||
def process_prequanted_weights(self, layer, state_dict) -> None:
|
||||
pass
|
||||
|
||||
@@ -395,24 +391,27 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
|
||||
machete_quantize_and_pack,
|
||||
)
|
||||
|
||||
# Using group scale for machete, group size is 128
|
||||
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
|
||||
w=weight,
|
||||
atype=layer._dtype,
|
||||
quant_type="uint4b8",
|
||||
quant_type="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
|
||||
group_size=128,
|
||||
)
|
||||
layer.weight.set_value(quanted_weight_tensor)
|
||||
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
|
||||
|
||||
def apply(self, layer, x):
|
||||
assert layer.bias is None, "Machete weight only linear method does not support bias."
|
||||
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
|
||||
from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm
|
||||
|
||||
# Using group scale for machete, group size is 128
|
||||
linear_out = machete_wint_mm(
|
||||
x,
|
||||
w_prepack=layer.weight,
|
||||
w_g_s=layer.weight_scale,
|
||||
weight_dtype="uint4b8",
|
||||
weight_dtype="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
|
||||
group_size=128,
|
||||
)
|
||||
|
||||
if layer.with_bias:
|
||||
linear_out = paddle.add(linear_out, layer.bias)
|
||||
return linear_out
|
||||
|
@@ -64,11 +64,11 @@ def convert_uint16_to_float(in_list):
|
||||
not core.is_compiled_with_cuda() or get_sm_version() < 90,
|
||||
"machete only support sm90.",
|
||||
)
|
||||
class WeightOnlyLinearTestCase(unittest.TestCase):
|
||||
class WeightOnlyInt4LinearTestCase(unittest.TestCase):
|
||||
def config(self):
|
||||
self.dtype = "float16"
|
||||
self.rtol = 1e-5
|
||||
self.atol = 1e-2
|
||||
self.atol = 1.3e-1
|
||||
self.bias = False
|
||||
self.batch = 1
|
||||
self.token = 512
|
||||
@@ -77,11 +77,10 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
|
||||
self.weight_dtype = "int4"
|
||||
self.static = False
|
||||
self.group_size = -1
|
||||
self.machete_group_size = -1
|
||||
|
||||
def setUp(self):
|
||||
self.config()
|
||||
if self.dtype == "bfloat16" or self.weight_dtype == "int4":
|
||||
self.atol = 1.3e-1
|
||||
x = np.random.random((self.token, self.in_features))
|
||||
self.x = paddle.to_tensor(x, dtype=self.dtype)
|
||||
if self.bias:
|
||||
@@ -111,7 +110,6 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
|
||||
return out.numpy()
|
||||
|
||||
def get_weight_only_linear_out(self):
|
||||
for i in range(10):
|
||||
out = Q.weight_only_linear(
|
||||
self.x,
|
||||
self.weight,
|
||||
@@ -126,15 +124,19 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
|
||||
w_q, w_s = machete_quantize_and_pack(
|
||||
w=self.float_weight.cuda(),
|
||||
atype=self.dtype,
|
||||
quant_type="uint4b8",
|
||||
quant_type="uint4b8" if self.weight_dtype == "int4" else "uint8b128",
|
||||
group_size=self.machete_group_size,
|
||||
)
|
||||
|
||||
out = machete_wint_mm(
|
||||
self.x,
|
||||
w_prepack=w_q,
|
||||
w_g_s=w_s, # group scales
|
||||
weight_dtype="uint4b8", # weight_dtype
|
||||
weight_dtype="uint4b8" if self.weight_dtype == "int4" else "uint8b128", # weight_dtype
|
||||
group_size=self.machete_group_size,
|
||||
)
|
||||
if self.bias is not None:
|
||||
out = paddle.add(out, self.bias)
|
||||
return out.numpy()
|
||||
|
||||
def test_weight_only_linear(self):
|
||||
@@ -149,26 +151,96 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
|
||||
np.testing.assert_allclose(out_paddle, out_machete, rtol=self.rtol, atol=self.atol)
|
||||
|
||||
|
||||
M = [32, 128]
|
||||
K_N = [[2048, 4096]]
|
||||
@unittest.skipIf(
|
||||
not core.is_compiled_with_cuda() or get_sm_version() < 90,
|
||||
"machete only support sm90.",
|
||||
)
|
||||
class WeightOnlyInt8LinearTestCase(unittest.TestCase):
|
||||
def config(self):
|
||||
self.dtype = "float16"
|
||||
self.rtol = 1e-5
|
||||
self.atol = 1e-1
|
||||
self.bias = True
|
||||
self.batch = 1
|
||||
self.token = 512
|
||||
self.in_features = 7168
|
||||
self.out_features = 1024
|
||||
self.weight_dtype = "int8"
|
||||
self.static = False
|
||||
self.group_size = -1
|
||||
self.machete_group_size = 128
|
||||
|
||||
def setUp(self):
|
||||
self.config()
|
||||
x = np.random.random((self.token, self.in_features))
|
||||
self.x = paddle.to_tensor(x, dtype=self.dtype)
|
||||
if self.bias:
|
||||
bias_attr = base.ParamAttr(
|
||||
trainable=False,
|
||||
regularizer=None,
|
||||
initializer=paddle.nn.initializer.Constant(value=1.0),
|
||||
)
|
||||
else:
|
||||
bias_attr = None
|
||||
set_default_dtype(self.dtype)
|
||||
self.linear = paddle.nn.Linear(self.in_features, self.out_features, bias_attr=bias_attr)
|
||||
|
||||
def make_case(m, k, n):
|
||||
class Case(WeightOnlyLinearTestCase):
|
||||
def config(self, _m=m, _k=k, _n=n):
|
||||
super().config()
|
||||
self.token = m
|
||||
self.in_features = k
|
||||
self.out_features = n
|
||||
self.bias = self.linear.bias
|
||||
self.weight = self.linear.weight
|
||||
self.float_weight = self.linear.weight
|
||||
self.weight_scale = None
|
||||
|
||||
Case.name = f"WeightOnlyLinearTestCase{m}{k}{n}"
|
||||
return Case
|
||||
self.weight, self.weight_scale = Q.weight_quantize(
|
||||
(self.float_weight.cuda() if self.weight_dtype == "int8" else self.weight.cpu()),
|
||||
algo=("weight_only_int8" if self.weight_dtype == "int8" else "weight_only_int4"),
|
||||
group_size=self.group_size,
|
||||
)
|
||||
|
||||
def get_linear_out(self):
|
||||
out = self.linear(self.x)
|
||||
return out.numpy()
|
||||
|
||||
def get_weight_only_linear_out(self):
|
||||
out = Q.weight_only_linear(
|
||||
self.x,
|
||||
self.weight,
|
||||
bias=self.bias,
|
||||
weight_scale=self.weight_scale,
|
||||
weight_dtype=self.weight_dtype,
|
||||
group_size=self.group_size,
|
||||
)
|
||||
return out.numpy()
|
||||
|
||||
def get_machete_weight_only_linear_out(self):
|
||||
w_q, w_s = machete_quantize_and_pack(
|
||||
w=self.float_weight.cuda(),
|
||||
atype=self.dtype,
|
||||
quant_type="uint4b8" if self.weight_dtype == "int4" else "uint8b128",
|
||||
group_size=self.machete_group_size,
|
||||
)
|
||||
|
||||
out = machete_wint_mm(
|
||||
self.x,
|
||||
w_prepack=w_q,
|
||||
w_g_s=w_s, # group scales
|
||||
weight_dtype="uint4b8" if self.weight_dtype == "int4" else "uint8b128", # weight_dtype
|
||||
group_size=self.machete_group_size,
|
||||
)
|
||||
if self.bias is not None:
|
||||
out = paddle.add(out, self.bias)
|
||||
return out.numpy()
|
||||
|
||||
def test_weight_only_linear(self):
|
||||
out_expect = self.get_linear_out()
|
||||
# out_paddle = self.get_weight_only_linear_out()
|
||||
out_machete = self.get_machete_weight_only_linear_out()
|
||||
|
||||
if self.dtype == "bfloat16":
|
||||
# out_paddle = convert_uint16_to_float(out_paddle)
|
||||
out_expect = convert_uint16_to_float(out_expect)
|
||||
out_machete = convert_uint16_to_float(out_machete)
|
||||
np.testing.assert_allclose(out_expect, out_machete, rtol=self.rtol, atol=self.atol)
|
||||
|
||||
for k, n in K_N:
|
||||
for m in M:
|
||||
cls = make_case(m, k, n)
|
||||
globals()[cls.name] = cls
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Reference in New Issue
Block a user