[CP2.2] Machete support group scale & wint8 & v1 loader (#4166)

* support v1 loader for machete (#3999)

* [Optimize] Support WINT8 and group scale for Machete (#3905)

* [Optimize] Machete using group scale default (#4121)
This commit is contained in:
Sunny-bot1
2025-09-19 11:13:12 +08:00
committed by GitHub
parent 74d7b9151d
commit 4f460db556
5 changed files with 166 additions and 82 deletions

View File

@@ -30,10 +30,12 @@ paddle::Tensor mm(paddle::Tensor const& A, paddle::Tensor const& B,
std::optional<paddle::Tensor> const& maybe_token_scales, std::optional<paddle::Tensor> const& maybe_token_scales,
std::string maybe_schedule) { std::string maybe_schedule) {
machete::ScalarType const b_type = machete::ScalarType::from_id(b_type_id); machete::ScalarType const b_type = machete::ScalarType::from_id(b_type_id);
std::optional<int64_t> maybe_group_size_opt; std::optional<int64_t> maybe_group_size_opt = std::optional<int64_t>(maybe_group_size);
std::optional<std::string> maybe_schedule_opt; std::optional<std::string> maybe_schedule_opt;
if (maybe_schedule == "") { if (maybe_schedule == "") {
maybe_schedule_opt = std::nullopt; maybe_schedule_opt = std::nullopt;
} else {
maybe_schedule_opt = std::optional<std::string>(maybe_schedule);
} }
return machete::mm_dispatch({.A = A, return machete::mm_dispatch({.A = A,
.B = B, .B = B,
@@ -63,6 +65,8 @@ std::vector<paddle::Tensor> MacheteMMKernel(
paddle::DataType maybe_out_type; paddle::DataType maybe_out_type;
if (b_type_str == "uint4b8") { if (b_type_str == "uint4b8") {
b_type_id = machete::kU4B8.id(); b_type_id = machete::kU4B8.id();
} else if (b_type_str == "uint8b128") {
b_type_id = machete::kU8B128.id();
} else { } else {
PADDLE_ENFORCE(false, "b_type_str not supported!"); PADDLE_ENFORCE(false, "b_type_str not supported!");
} }

View File

@@ -51,6 +51,8 @@ std::vector<paddle::Tensor> MachetePrepackBKernel(
if (b_type_str == "uint4b8") { if (b_type_str == "uint4b8") {
b_type_id = machete::kU4B8.id(); b_type_id = machete::kU4B8.id();
} else if (b_type_str == "uint8b128") {
b_type_id = machete::kU8B128.id();
} else { } else {
PADDLE_ENFORCE(false, "b_type_str not supported!"); PADDLE_ENFORCE(false, "b_type_str not supported!");
} }

View File

@@ -85,7 +85,7 @@ def quantize_weights(
w_s: Scales (None if `group_size` is None). w_s: Scales (None if `group_size` is None).
""" """
assert paddle.is_floating_point(w), "w must be float type" assert paddle.is_floating_point(w), "w must be float type"
assert quant_type in ["uint4", "uint4b8"], "only support quant_type = uint4, uint4b8" assert quant_type in ["uint4b8", "uint8b128"], "only support quant_type = uint4b8, uint8b128"
orig_device = w.place orig_device = w.place
size_k, size_n = w.shape size_k, size_n = w.shape
@@ -103,8 +103,12 @@ def quantize_weights(
max_val = paddle.max(w, axis=0, keepdim=True) max_val = paddle.max(w, axis=0, keepdim=True)
min_val = paddle.min(w, axis=0, keepdim=True) min_val = paddle.min(w, axis=0, keepdim=True)
max_q_val = float(7.0) if quant_type == "uint4b8":
min_q_val = float(-8.0) max_q_val = float(7.0)
min_q_val = float(-8.0)
else:
max_q_val = float(127.0)
min_q_val = float(-128.0)
w_s = paddle.ones([1], dtype=paddle.float32) # unscaled case w_s = paddle.ones([1], dtype=paddle.float32) # unscaled case
@@ -124,6 +128,8 @@ def quantize_weights(
# w_q += quant_type.bias # w_q += quant_type.bias
if quant_type == "uint4b8": if quant_type == "uint4b8":
w_q += 8 w_q += 8
else:
w_q += 128
# Restore original shapes # Restore original shapes
if group_size is not None and group_size < size_k: if group_size is not None and group_size < size_k:
@@ -131,11 +137,11 @@ def quantize_weights(
def reshape_w(w_tensor): def reshape_w(w_tensor):
w_tensor = w_tensor.reshape([group_size, -1, size_n]) w_tensor = w_tensor.reshape([group_size, -1, size_n])
w_tensor = w_tensor.transpose([1, 0, 2]) w_tensor = w_tensor.transpose([1, 0, 2])
w_tensor = w_tensor.reshape([size_k, size_n]) w_tensor = w_tensor.reshape([size_k, size_n]).contiguous()
return w_tensor return w_tensor
w_q = reshape_w(w_q) w_q = reshape_w(w_q)
w_s = w_s.reshape([-1, size_n]) w_s = w_s.reshape([-1, size_n]).contiguous()
# Move tensors back to original device # Move tensors back to original device
w_q = w_q.to(orig_device) w_q = w_q.to(orig_device)
@@ -153,7 +159,8 @@ def machete_quantize_and_pack(
group_size: int = -1, group_size: int = -1,
): ):
w_q, w_s = quantize_weights(w, group_size, quant_type=quant_type) w_q, w_s = quantize_weights(w, group_size, quant_type=quant_type)
w_q = pack_rows(w_q, 4, *w_q.shape) num_bits = 4 if quant_type == "uint4b8" else 8
w_q = pack_rows(w_q, num_bits, *w_q.shape)
w_q_col = w_q.transpose([1, 0]).contiguous() # convert to col major w_q_col = w_q.transpose([1, 0]).contiguous() # convert to col major
w_q_prepack = machete_prepack_B( w_q_prepack = machete_prepack_B(
w_q_col, w_q_col,

View File

@@ -141,8 +141,7 @@ class WeightOnlyConfig(QuantConfigBase):
) )
if ( if (
self.name() == "wint4" _ENABLE_MACHETE
and _ENABLE_MACHETE
and envs.FD_USE_MACHETE == "1" and envs.FD_USE_MACHETE == "1"
and layer.weight_shape[1] and layer.weight_shape[1]
and layer.weight_shape[1] % 128 == 0 and layer.weight_shape[1] % 128 == 0
@@ -219,12 +218,22 @@ class WeightOnlyLinearMethod(QuantMethodBase):
quant_attrs, quant_attrs,
) )
else: else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization. if isinstance(self, MacheteWeightOnlyLinearMethod):
weight_scale_shape = [layer.weight_shape[1]] # Using group scale for machete, group size is 128
layer.weight_shape.reverse() weight_scale_shape = [(layer.weight_shape[0] + 127) // 128, layer.weight_shape[1]]
if self.quant_config.name() == "wint4": if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2 layer.weight_shape[0] //= 8
layer.weight_dtype = "int8" else:
layer.weight_shape[0] //= 4
layer.weight_dtype = "int32"
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter( layer.weight = layer.create_parameter(
shape=layer.weight_shape, shape=layer.weight_shape,
dtype=layer.weight_dtype, dtype=layer.weight_dtype,
@@ -260,17 +269,30 @@ class WeightOnlyLinearMethod(QuantMethodBase):
def process_weights_after_loading(self, layer) -> None: def process_weights_after_loading(self, layer) -> None:
if not layer.fd_config.load_config.load_choices == "default_v1": if not layer.fd_config.load_config.load_choices == "default_v1":
return return
quanted_weight_tensor, weight_scale_tensor = weight_quantize( if isinstance(self, MacheteWeightOnlyLinearMethod):
layer.weight, from fastdeploy.model_executor.layers.quantization.ops import (
algo=self.quant_config.algo, machete_quantize_and_pack,
arch=self.quant_config.weight_only_linear_arch, )
)
# Using group scale for machete, group size is 128
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
w=layer.weight,
atype=layer._dtype,
quant_type="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
group_size=128,
)
else:
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
free_tensor(layer.weight) free_tensor(layer.weight)
layer.weight = layer.create_parameter( layer.weight = layer.create_parameter(
shape=quanted_weight_tensor.shape, shape=quanted_weight_tensor.shape,
dtype="int8", dtype="int8" if not isinstance(self, MacheteWeightOnlyLinearMethod) else "int32",
is_bias=False, is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0), default_initializer=paddle.nn.initializer.Constant(0),
) )
@@ -361,32 +383,6 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
) -> None: ) -> None:
super().__init__(quant_config) super().__init__(quant_config)
def create_weights(self, layer, **extra_weight_attrs):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [1, layer.weight_shape[1]]
# layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 8
layer.weight_dtype = "int32"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,
is_bias=False,
)
def process_prequanted_weights(self, layer, state_dict) -> None: def process_prequanted_weights(self, layer, state_dict) -> None:
pass pass
@@ -395,24 +391,27 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
machete_quantize_and_pack, machete_quantize_and_pack,
) )
# Using group scale for machete, group size is 128
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack( quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
w=weight, w=weight,
atype=layer._dtype, atype=layer._dtype,
quant_type="uint4b8", quant_type="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
group_size=128,
) )
layer.weight.set_value(quanted_weight_tensor) layer.weight.set_value(quanted_weight_tensor)
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype())) layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
def apply(self, layer, x): def apply(self, layer, x):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm
# Using group scale for machete, group size is 128
linear_out = machete_wint_mm( linear_out = machete_wint_mm(
x, x,
w_prepack=layer.weight, w_prepack=layer.weight,
w_g_s=layer.weight_scale, w_g_s=layer.weight_scale,
weight_dtype="uint4b8", weight_dtype="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
group_size=128,
) )
if layer.with_bias:
linear_out = paddle.add(linear_out, layer.bias)
return linear_out return linear_out

View File

@@ -64,11 +64,11 @@ def convert_uint16_to_float(in_list):
not core.is_compiled_with_cuda() or get_sm_version() < 90, not core.is_compiled_with_cuda() or get_sm_version() < 90,
"machete only support sm90.", "machete only support sm90.",
) )
class WeightOnlyLinearTestCase(unittest.TestCase): class WeightOnlyInt4LinearTestCase(unittest.TestCase):
def config(self): def config(self):
self.dtype = "float16" self.dtype = "float16"
self.rtol = 1e-5 self.rtol = 1e-5
self.atol = 1e-2 self.atol = 1.3e-1
self.bias = False self.bias = False
self.batch = 1 self.batch = 1
self.token = 512 self.token = 512
@@ -77,11 +77,10 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
self.weight_dtype = "int4" self.weight_dtype = "int4"
self.static = False self.static = False
self.group_size = -1 self.group_size = -1
self.machete_group_size = -1
def setUp(self): def setUp(self):
self.config() self.config()
if self.dtype == "bfloat16" or self.weight_dtype == "int4":
self.atol = 1.3e-1
x = np.random.random((self.token, self.in_features)) x = np.random.random((self.token, self.in_features))
self.x = paddle.to_tensor(x, dtype=self.dtype) self.x = paddle.to_tensor(x, dtype=self.dtype)
if self.bias: if self.bias:
@@ -111,30 +110,33 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
return out.numpy() return out.numpy()
def get_weight_only_linear_out(self): def get_weight_only_linear_out(self):
for i in range(10): out = Q.weight_only_linear(
out = Q.weight_only_linear( self.x,
self.x, self.weight,
self.weight, bias=self.bias,
bias=self.bias, weight_scale=self.weight_scale,
weight_scale=self.weight_scale, weight_dtype=self.weight_dtype,
weight_dtype=self.weight_dtype, group_size=self.group_size,
group_size=self.group_size, )
)
return out.numpy() return out.numpy()
def get_machete_weight_only_linear_out(self): def get_machete_weight_only_linear_out(self):
w_q, w_s = machete_quantize_and_pack( w_q, w_s = machete_quantize_and_pack(
w=self.float_weight.cuda(), w=self.float_weight.cuda(),
atype=self.dtype, atype=self.dtype,
quant_type="uint4b8", quant_type="uint4b8" if self.weight_dtype == "int4" else "uint8b128",
group_size=self.machete_group_size,
) )
out = machete_wint_mm( out = machete_wint_mm(
self.x, self.x,
w_prepack=w_q, w_prepack=w_q,
w_g_s=w_s, # group scales w_g_s=w_s, # group scales
weight_dtype="uint4b8", # weight_dtype weight_dtype="uint4b8" if self.weight_dtype == "int4" else "uint8b128", # weight_dtype
group_size=self.machete_group_size,
) )
if self.bias is not None:
out = paddle.add(out, self.bias)
return out.numpy() return out.numpy()
def test_weight_only_linear(self): def test_weight_only_linear(self):
@@ -149,26 +151,96 @@ class WeightOnlyLinearTestCase(unittest.TestCase):
np.testing.assert_allclose(out_paddle, out_machete, rtol=self.rtol, atol=self.atol) np.testing.assert_allclose(out_paddle, out_machete, rtol=self.rtol, atol=self.atol)
M = [32, 128] @unittest.skipIf(
K_N = [[2048, 4096]] not core.is_compiled_with_cuda() or get_sm_version() < 90,
"machete only support sm90.",
)
class WeightOnlyInt8LinearTestCase(unittest.TestCase):
def config(self):
self.dtype = "float16"
self.rtol = 1e-5
self.atol = 1e-1
self.bias = True
self.batch = 1
self.token = 512
self.in_features = 7168
self.out_features = 1024
self.weight_dtype = "int8"
self.static = False
self.group_size = -1
self.machete_group_size = 128
def setUp(self):
self.config()
x = np.random.random((self.token, self.in_features))
self.x = paddle.to_tensor(x, dtype=self.dtype)
if self.bias:
bias_attr = base.ParamAttr(
trainable=False,
regularizer=None,
initializer=paddle.nn.initializer.Constant(value=1.0),
)
else:
bias_attr = None
set_default_dtype(self.dtype)
self.linear = paddle.nn.Linear(self.in_features, self.out_features, bias_attr=bias_attr)
def make_case(m, k, n): self.bias = self.linear.bias
class Case(WeightOnlyLinearTestCase): self.weight = self.linear.weight
def config(self, _m=m, _k=k, _n=n): self.float_weight = self.linear.weight
super().config() self.weight_scale = None
self.token = m
self.in_features = k
self.out_features = n
Case.name = f"WeightOnlyLinearTestCase{m}{k}{n}" self.weight, self.weight_scale = Q.weight_quantize(
return Case (self.float_weight.cuda() if self.weight_dtype == "int8" else self.weight.cpu()),
algo=("weight_only_int8" if self.weight_dtype == "int8" else "weight_only_int4"),
group_size=self.group_size,
)
def get_linear_out(self):
out = self.linear(self.x)
return out.numpy()
def get_weight_only_linear_out(self):
out = Q.weight_only_linear(
self.x,
self.weight,
bias=self.bias,
weight_scale=self.weight_scale,
weight_dtype=self.weight_dtype,
group_size=self.group_size,
)
return out.numpy()
def get_machete_weight_only_linear_out(self):
w_q, w_s = machete_quantize_and_pack(
w=self.float_weight.cuda(),
atype=self.dtype,
quant_type="uint4b8" if self.weight_dtype == "int4" else "uint8b128",
group_size=self.machete_group_size,
)
out = machete_wint_mm(
self.x,
w_prepack=w_q,
w_g_s=w_s, # group scales
weight_dtype="uint4b8" if self.weight_dtype == "int4" else "uint8b128", # weight_dtype
group_size=self.machete_group_size,
)
if self.bias is not None:
out = paddle.add(out, self.bias)
return out.numpy()
def test_weight_only_linear(self):
out_expect = self.get_linear_out()
# out_paddle = self.get_weight_only_linear_out()
out_machete = self.get_machete_weight_only_linear_out()
if self.dtype == "bfloat16":
# out_paddle = convert_uint16_to_float(out_paddle)
out_expect = convert_uint16_to_float(out_expect)
out_machete = convert_uint16_to_float(out_machete)
np.testing.assert_allclose(out_expect, out_machete, rtol=self.rtol, atol=self.atol)
for k, n in K_N:
for m in M:
cls = make_case(m, k, n)
globals()[cls.name] = cls
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()