[CP2.2] Machete support group scale & wint8 & v1 loader (#4166)

* support v1 loader for machete (#3999)

* [Optimize] Support WINT8 and group scale for Machete (#3905)

* [Optimize] Machete using group scale default (#4121)
This commit is contained in:
Sunny-bot1
2025-09-19 11:13:12 +08:00
committed by GitHub
parent 74d7b9151d
commit 4f460db556
5 changed files with 166 additions and 82 deletions

View File

@@ -85,7 +85,7 @@ def quantize_weights(
w_s: Scales (None if `group_size` is None).
"""
assert paddle.is_floating_point(w), "w must be float type"
assert quant_type in ["uint4", "uint4b8"], "only support quant_type = uint4, uint4b8"
assert quant_type in ["uint4b8", "uint8b128"], "only support quant_type = uint4b8, uint8b128"
orig_device = w.place
size_k, size_n = w.shape
@@ -103,8 +103,12 @@ def quantize_weights(
max_val = paddle.max(w, axis=0, keepdim=True)
min_val = paddle.min(w, axis=0, keepdim=True)
max_q_val = float(7.0)
min_q_val = float(-8.0)
if quant_type == "uint4b8":
max_q_val = float(7.0)
min_q_val = float(-8.0)
else:
max_q_val = float(127.0)
min_q_val = float(-128.0)
w_s = paddle.ones([1], dtype=paddle.float32) # unscaled case
@@ -124,6 +128,8 @@ def quantize_weights(
# w_q += quant_type.bias
if quant_type == "uint4b8":
w_q += 8
else:
w_q += 128
# Restore original shapes
if group_size is not None and group_size < size_k:
@@ -131,11 +137,11 @@ def quantize_weights(
def reshape_w(w_tensor):
w_tensor = w_tensor.reshape([group_size, -1, size_n])
w_tensor = w_tensor.transpose([1, 0, 2])
w_tensor = w_tensor.reshape([size_k, size_n])
w_tensor = w_tensor.reshape([size_k, size_n]).contiguous()
return w_tensor
w_q = reshape_w(w_q)
w_s = w_s.reshape([-1, size_n])
w_s = w_s.reshape([-1, size_n]).contiguous()
# Move tensors back to original device
w_q = w_q.to(orig_device)
@@ -153,7 +159,8 @@ def machete_quantize_and_pack(
group_size: int = -1,
):
w_q, w_s = quantize_weights(w, group_size, quant_type=quant_type)
w_q = pack_rows(w_q, 4, *w_q.shape)
num_bits = 4 if quant_type == "uint4b8" else 8
w_q = pack_rows(w_q, num_bits, *w_q.shape)
w_q_col = w_q.transpose([1, 0]).contiguous() # convert to col major
w_q_prepack = machete_prepack_B(
w_q_col,

View File

@@ -141,8 +141,7 @@ class WeightOnlyConfig(QuantConfigBase):
)
if (
self.name() == "wint4"
and _ENABLE_MACHETE
_ENABLE_MACHETE
and envs.FD_USE_MACHETE == "1"
and layer.weight_shape[1]
and layer.weight_shape[1] % 128 == 0
@@ -219,12 +218,22 @@ class WeightOnlyLinearMethod(QuantMethodBase):
quant_attrs,
)
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
if isinstance(self, MacheteWeightOnlyLinearMethod):
# Using group scale for machete, group size is 128
weight_scale_shape = [(layer.weight_shape[0] + 127) // 128, layer.weight_shape[1]]
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 8
else:
layer.weight_shape[0] //= 4
layer.weight_dtype = "int32"
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
@@ -260,17 +269,30 @@ class WeightOnlyLinearMethod(QuantMethodBase):
def process_weights_after_loading(self, layer) -> None:
if not layer.fd_config.load_config.load_choices == "default_v1":
return
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
if isinstance(self, MacheteWeightOnlyLinearMethod):
from fastdeploy.model_executor.layers.quantization.ops import (
machete_quantize_and_pack,
)
# Using group scale for machete, group size is 128
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
w=layer.weight,
atype=layer._dtype,
quant_type="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
group_size=128,
)
else:
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
free_tensor(layer.weight)
layer.weight = layer.create_parameter(
shape=quanted_weight_tensor.shape,
dtype="int8",
dtype="int8" if not isinstance(self, MacheteWeightOnlyLinearMethod) else "int32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
@@ -361,32 +383,6 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
) -> None:
super().__init__(quant_config)
def create_weights(self, layer, **extra_weight_attrs):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [1, layer.weight_shape[1]]
# layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 8
layer.weight_dtype = "int32"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,
is_bias=False,
)
def process_prequanted_weights(self, layer, state_dict) -> None:
pass
@@ -395,24 +391,27 @@ class MacheteWeightOnlyLinearMethod(WeightOnlyLinearMethod):
machete_quantize_and_pack,
)
# Using group scale for machete, group size is 128
quanted_weight_tensor, weight_scale_tensor = machete_quantize_and_pack(
w=weight,
atype=layer._dtype,
quant_type="uint4b8",
quant_type="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
group_size=128,
)
layer.weight.set_value(quanted_weight_tensor)
layer.weight_scale.set_value(weight_scale_tensor.astype(paddle.get_default_dtype()))
def apply(self, layer, x):
assert layer.bias is None, "Machete weight only linear method does not support bias."
assert self.quant_config.name() == "wint4", "Machete weight only linear method only supports wint4."
from fastdeploy.model_executor.layers.quantization.ops import machete_wint_mm
# Using group scale for machete, group size is 128
linear_out = machete_wint_mm(
x,
w_prepack=layer.weight,
w_g_s=layer.weight_scale,
weight_dtype="uint4b8",
weight_dtype="uint4b8" if self.quant_config.name() == "wint4" else "uint8b128",
group_size=128,
)
if layer.with_bias:
linear_out = paddle.add(linear_out, layer.bias)
return linear_out