mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
Simplify the Config code (#2770)
* simplify the code * fix vl * delete config * fix * perfect code * fix ci * fix xpu * fix xpu * fix server * resolve conflict * fix mtp * resolve conflict * fix xpu * fix xpu * fix vl * fix log * fix qwen moe * fix qwen moe * fix qwen moe
This commit is contained in:
@@ -21,14 +21,15 @@ from enum import Enum
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
||||
from paddleformers.trl import llm_utils
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.model_executor.layers.quantization.quant_base import \
|
||||
QuantConfigBase
|
||||
from fastdeploy.utils import get_logger
|
||||
|
||||
logger = get_logger("config", "config.log")
|
||||
|
||||
|
||||
class MoEPhase(Enum):
|
||||
"""
|
||||
The generation phase of the moe.
|
||||
@@ -37,274 +38,228 @@ class MoEPhase(Enum):
|
||||
PREFILL = 1
|
||||
DECODER = 2
|
||||
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
"rope_theta": 10000.0,
|
||||
"num_key_value_heads":-1,
|
||||
"start_layer_index": 0,
|
||||
"moe_num_shared_experts":0,
|
||||
"moe_layer_start_index": 0,
|
||||
"num_max_dispatch_tokens_per_rank":256,
|
||||
"moe_use_aux_free":False,
|
||||
"vocab_size": -1,
|
||||
"use_rope": True,
|
||||
"hidden_dropout_prob":0.0,
|
||||
"initializer_range":0.02,
|
||||
"max_position_embeddings":512,
|
||||
"quantization_config":None,
|
||||
"use_recompute_resampler":False,
|
||||
"use_temporal_conv":True,
|
||||
"resampler_fuse_rms_norm":False,
|
||||
"freq_allocation":20,
|
||||
"tie_word_embeddings":False,
|
||||
"rms_norm_eps":1e-5,
|
||||
}
|
||||
|
||||
class ModelConfig(PretrainedConfig):
|
||||
|
||||
class ModelConfig:
|
||||
"""
|
||||
The configuration class to store the configuration of a `LLM`.
|
||||
"""
|
||||
max_stop_seqs_num = 5
|
||||
stop_seqs_max_len = 8
|
||||
|
||||
architectures: list[str] = []
|
||||
|
||||
# NOTE(gongshaotain): form _load_model_init_val()
|
||||
top_p = 0.0
|
||||
temperature = 1.0
|
||||
rope_theta = 10000.0
|
||||
penalty_score = 1.0
|
||||
frequency_score = 0.0
|
||||
presence_score = 0.0
|
||||
min_length = 1
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 100224,
|
||||
hidden_size: int = 4096,
|
||||
num_layers: int = 48,
|
||||
num_attention_heads: int = 32,
|
||||
num_key_value_heads: Optional[int] = None,
|
||||
hidden_act: str = "swiglu",
|
||||
hidden_dropout_prob: float = 0.0,
|
||||
max_position_embeddings: int = 512,
|
||||
max_seq_len: int = 512,
|
||||
initializer_range: float = 0.02,
|
||||
use_rope=True,
|
||||
rope_theta: int = 10000,
|
||||
rope_3d: bool = False,
|
||||
ori_vocab_size: int | None = None,
|
||||
moe_layer_start_index: Union[int, list[int], None] = None,
|
||||
moe_num_experts: Union[int, list[int], None] = None,
|
||||
moe_layer_end_index: Union[int, list[int], None] = None,
|
||||
moe_num_shared_experts: int | None = None,
|
||||
num_hidden_layers: int | None = None,
|
||||
prefix_name="",
|
||||
freeze_embedding=False,
|
||||
rope_head_dim=None,
|
||||
ffn_hidden_size: Optional[int] = None,
|
||||
dtype="bfloat16",
|
||||
start_layer_index: int = 0,
|
||||
head_dim: Optional[int] = None,
|
||||
tie_word_embeddings: bool = False,
|
||||
is_quantized: bool = False,
|
||||
rms_norm_eps: float = 1e-5,
|
||||
**kwargs,
|
||||
args,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
if num_hidden_layers is not None:
|
||||
self.num_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
if head_dim is None:
|
||||
self.max_stop_seqs_num = 5
|
||||
self.stop_seqs_max_len = 8
|
||||
|
||||
# NOTE(gongshaotain): form _load_model_init_val()
|
||||
self.top_p = 0.0
|
||||
self.temperature = 1.0
|
||||
self.rope_theta = 10000.0
|
||||
self.penalty_score = 1.0
|
||||
self.frequency_score = 0.0
|
||||
self.presence_score = 0.0
|
||||
self.min_length = 1
|
||||
self.model_name_or_path = ""
|
||||
|
||||
self.im_patch_id = (
|
||||
100295 # multimodality, TODO(liuyuanle): read from config.json
|
||||
)
|
||||
self.is_quantized = False
|
||||
self.max_model_len = 0
|
||||
self.dtype = ""
|
||||
self.enable_logprob = False
|
||||
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
pretrained_config, _ = PretrainedConfig.get_config_dict(self.model_name_or_path)
|
||||
self.pretrained_config = PretrainedConfig.from_dict(pretrained_config)
|
||||
|
||||
# set attribute from pretrained_config
|
||||
for key, value in pretrained_config.items():
|
||||
setattr(self, key, value)
|
||||
|
||||
# we need set default value when not exist
|
||||
for key, value in PRETRAINED_INIT_CONFIGURATION.items():
|
||||
if not hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_attention_heads
|
||||
else:
|
||||
self.head_dim = head_dim
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.use_rope = use_rope
|
||||
self.rope_theta = rope_theta
|
||||
self.ori_vocab_size = ori_vocab_size or vocab_size
|
||||
self.max_seq_len = max_seq_len
|
||||
self.prefix_name = prefix_name
|
||||
self.freeze_embedding = freeze_embedding
|
||||
self.rope_head_dim = rope_head_dim
|
||||
self.moe_layer_start_index = moe_layer_start_index
|
||||
self.moe_num_experts = moe_num_experts
|
||||
self.moe_num_shared_experts = moe_num_shared_experts
|
||||
self.moe_layer_end_index = moe_layer_end_index
|
||||
self.ffn_hidden_size = ffn_hidden_size
|
||||
self.rope_3d = rope_3d
|
||||
self.start_layer_index = start_layer_index
|
||||
self.dtype = dtype
|
||||
self.tie_word_embeddings = tie_word_embeddings
|
||||
self.is_quantized = is_quantized
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
|
||||
if hasattr(self, "vision_config"):
|
||||
self.vision_config = PretrainedConfig.from_dict(self.vision_config)
|
||||
|
||||
@dataclass
|
||||
class MoEConfig:
|
||||
"""
|
||||
Configuration for MoE.
|
||||
"""
|
||||
num_experts: Union[int, list[int], None] = None
|
||||
top_k: int = 8
|
||||
moe_intermediate_size: int = -1
|
||||
num_experts_per_rank: int = -1
|
||||
num_experts_start_offset: int = -1
|
||||
self.ori_vocab_size = self.vocab_size
|
||||
if "Ernie4_5_ForCausalLM" in self.architectures or "Ernie4_5_MoeForCausalLM" in self.architectures:
|
||||
self.ori_vocab_size = args["ori_vocab_size"]
|
||||
|
||||
moe_num_shared_experts = (0, )
|
||||
moe_layer_start_index: Union[int, list[int], None] = None
|
||||
moe_layer_end_index: Union[int, list[int], None] = None
|
||||
moe_use_aux_free: bool = False
|
||||
num_max_dispatch_tokens_per_rank = 256
|
||||
im_patch_id = (
|
||||
100295 # multimodality, TODO(liuyuanle): read from config.json
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ParallelConfig:
|
||||
"""Configuration for the distributed execution."""
|
||||
block_size = 16 # The block size for processing.
|
||||
sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
use_ep = False # Whether to enable Expert Parallelism
|
||||
moe_phase = MoEPhase.PREFILL # Generation phase
|
||||
msg_queue_id = 1 # mesage queue id
|
||||
tensor_parallel_rank = None # TP rank ID
|
||||
tensor_parallel_degree = None # TP degree
|
||||
expert_parallel_rank = None # EP rank ID
|
||||
expert_parallel_degree = None # EP degree
|
||||
# The embedding weight distributed on your gpu cards is divided by row or column.
|
||||
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
||||
# but hidden_size can, we can consider split embedding weight by column.
|
||||
"""
|
||||
From old wersion worker args
|
||||
TODO(gongshaotian): Reclassify
|
||||
"""
|
||||
model_name_or_path: str = "./output"
|
||||
max_num_seqs: int = 34
|
||||
# Set default block num for profile run
|
||||
max_block_num: int = 2000
|
||||
# block size
|
||||
block_size: int = 64
|
||||
# Engine worker queue port
|
||||
engine_worker_queue_port: int = 9923
|
||||
# Max model len
|
||||
max_model_len: int = 3072 # max_seq_len
|
||||
# cuda visible devices
|
||||
device_ids: str = "0"
|
||||
# Input dtype
|
||||
dtype: str = "bfloat16"
|
||||
# Encoder's decoder num
|
||||
enc_dec_block_num: int = 1
|
||||
# KV cache ratio for input
|
||||
kv_cache_ratio: float = 0.7
|
||||
# First token id
|
||||
first_token_id: int = 1
|
||||
# Gpu memory utilization
|
||||
gpu_memory_utilization: float = 0.9
|
||||
# Process ID of engine
|
||||
engine_pid: Optional[int] = None
|
||||
# Do profile or not
|
||||
do_profile: bool = False
|
||||
#
|
||||
pad_token_id: int = -1
|
||||
#
|
||||
eos_tokens_lens: int = 2
|
||||
# Enable chunked prefill
|
||||
enable_chunked_prefill: str = "store_true"
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.sequence_parallel = False # Whether to enable sequence parallelism.
|
||||
self.use_ep = False # Whether to enable Expert Parallelism
|
||||
self.moe_phase = MoEPhase.PREFILL # Generation phase
|
||||
self.msg_queue_id = 1 # mesage queue id
|
||||
|
||||
max_num_batched_tokens: int = 2048
|
||||
# enable prefix cache
|
||||
enable_prefix_caching = None
|
||||
# splitwise role
|
||||
splitwise_role: str = "mixed"
|
||||
# guided decoding backend
|
||||
guided_decoding_backend: str = None
|
||||
# disable any whitespace for guided decoding
|
||||
disable_any_whitespace: bool = True
|
||||
# enable the custom all-reduce kernel and fall back to NCCL(dist.all_reduce).
|
||||
enable_custom_all_reduce: str = "store_true"
|
||||
tensor_parallel_rank, tensor_parallel_size = llm_utils.init_dist_env()
|
||||
self.tensor_parallel_rank = tensor_parallel_rank # TP rank ID
|
||||
self.tensor_parallel_size = tensor_parallel_size # TP degree
|
||||
self.expert_parallel_rank = int(tensor_parallel_rank / tensor_parallel_size) # EP rank ID
|
||||
self.expert_parallel_size = 1 # EP degree
|
||||
# The embedding weight distributed on your gpu cards is divided by row or column.
|
||||
# Defaults to False means divide by row. When vocab_size can not be divided by world_size
|
||||
# but hidden_size can, we can consider split embedding weight by column.
|
||||
"""
|
||||
From old wersion worker args
|
||||
TODO(gongshaotian): Reclassify
|
||||
"""
|
||||
self.model_name_or_path: str = "./output"
|
||||
self.max_num_seqs: int = 34
|
||||
# Set default block num for profile run
|
||||
self.max_block_num: int = 2000
|
||||
# block size
|
||||
self.block_size: int = 64
|
||||
# Engine worker queue port
|
||||
self.engine_worker_queue_port: int = 9923
|
||||
# Max model len
|
||||
self.max_model_len: int = 3072 # max_seq_len
|
||||
# cuda visible devices
|
||||
self.device_ids: str = "0"
|
||||
# Input dtype
|
||||
self.dtype: str = "bfloat16"
|
||||
# Encoder's decoder num
|
||||
self.enc_dec_block_num: int = 1
|
||||
# KV cache ratio for input
|
||||
self.kv_cache_ratio: float = 0.7
|
||||
# First token id
|
||||
self.first_token_id: int = 1
|
||||
# Gpu memory utilization
|
||||
self.gpu_memory_utilization: float = 0.9
|
||||
# Process ID of engine
|
||||
self.engine_pid: Optional[int] = None
|
||||
# Do profile or not
|
||||
self.do_profile: bool = False
|
||||
#
|
||||
self.pad_token_id: int = -1
|
||||
#
|
||||
self.eos_tokens_lens: int = 2
|
||||
# Enable chunked prefill
|
||||
self.enable_chunked_prefill: bool = False
|
||||
|
||||
self.max_num_batched_tokens: int = 2048
|
||||
# enable prefix cache
|
||||
self.enable_prefix_caching = None
|
||||
# splitwise role
|
||||
self.splitwise_role: str = "mixed"
|
||||
# guided decoding backend
|
||||
self.guided_decoding_backend: str = None
|
||||
# disable any whitespace for guided decoding
|
||||
self.disable_any_whitespace: bool = True
|
||||
self.pod_ip: str = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
self.use_ep = args["expert_parallel_size"] > 1
|
||||
if self.splitwise_role == "mixed":
|
||||
self.moe_phase = MoEPhase.PREFILL
|
||||
elif self.splitwise_role == "prefill":
|
||||
self.moe_phase = MoEPhase.PREFILL
|
||||
elif self.splitwise_role == "decode":
|
||||
self.moe_phase = MoEPhase.DECODER
|
||||
else:
|
||||
raise NotImplementedError
|
||||
# enable the custom all-reduce kernel and fall back to NCCL(dist.all_reduce).
|
||||
self.enable_custom_all_reduce: bool = False
|
||||
|
||||
@dataclass
|
||||
class SpeculativeConfig:
|
||||
"""
|
||||
Configuration for speculative decoding.
|
||||
"""
|
||||
# speculative method, choose in [None, "ngram_match", "mtp"]
|
||||
method: Optional[str] = None
|
||||
# the max length of speculative tokens
|
||||
num_speculative_tokens: int = 1
|
||||
# the max length of candidate tokens for speculative method
|
||||
max_candidate_len: int = 5
|
||||
# the max length of verify window for speculative method
|
||||
verify_window: int = 2
|
||||
# ngram match
|
||||
max_ngram_size: int = 5
|
||||
# model for mtp/eagle/draft_model
|
||||
model_name_or_path: Optional[str] = None
|
||||
# quantization of model
|
||||
quantization: Optional[str] = None
|
||||
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
||||
# Fixed now
|
||||
num_gpu_block_expand_ratio: Optional[float] = 1
|
||||
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
||||
# ["main", "mtp"]
|
||||
model_type: Optional[str] = "main"
|
||||
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
||||
# A trick method is currently used to enable this sharing.
|
||||
# This will be replaced with a more standardized solution in the future.
|
||||
sharing_model = None
|
||||
# During benchmarking, we need to enforce that the number of accepted tokens is 1.
|
||||
# This means no tokens from MTP are accepted.
|
||||
# This ensures that the specified simulation acceptance rate is not affected.
|
||||
benchmark_mode: bool = False
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
# speculative method, choose in [None, "ngram_match", "mtp"]
|
||||
self.method: Optional[str] = None
|
||||
# the max length of speculative tokens
|
||||
self.num_speculative_tokens: int = 1
|
||||
# the max length of candidate tokens for speculative method
|
||||
self.max_candidate_len: int = 5
|
||||
# the max length of verify window for speculative method
|
||||
self.verify_window: int = 2
|
||||
# ngram match
|
||||
self.max_ngram_size: int = 5
|
||||
# model for mtp/eagle/draft_model
|
||||
self.model_name_or_path: Optional[str] = None
|
||||
# quantization of model
|
||||
self.quantization: Optional[str] = None
|
||||
# allocate more blocks to prevent mtp from finishing the block earlier than the main model
|
||||
# Fixed now
|
||||
self.num_gpu_block_expand_ratio: Optional[float] = 1
|
||||
# To distinguish the main model and draft model(mtp/eagle/draftmodel)
|
||||
# ["main", "mtp"]
|
||||
self.model_type: Optional[str] = "main"
|
||||
# TODO(liuzichang): To reduce memory usage, MTP shares the main model's lm_head and embedding layers.
|
||||
# A trick method is currently used to enable this sharing.
|
||||
# This will be replaced with a more standardized solution in the future.
|
||||
self.sharing_model = None
|
||||
# During benchmarking, we need to enforce that the number of accepted tokens is 1.
|
||||
# This means no tokens from MTP are accepted.
|
||||
# This ensures that the specified simulation acceptance rate is not affected.
|
||||
self.benchmark_mode: bool = False
|
||||
|
||||
#TODO(YuanRisheng): The name of the server args is different from the name of the SpeculativeConfig.
|
||||
#We temperately add the name map here and will delete it in future.
|
||||
name_map = {"speculative_method": "method",
|
||||
"speculative_max_draft_token_num": "num_speculative_tokens",
|
||||
"speculative_model_name_or_path": "model_name_or_path",
|
||||
"speculative_model_quantization": "quantization",
|
||||
"speculative_benchmark_mode": "benchmark_mode"}
|
||||
|
||||
for key, value in args.items():
|
||||
if key in name_map.keys() and hasattr(self, name_map[key]):
|
||||
setattr(self, name_map[key], value)
|
||||
|
||||
@dataclass
|
||||
class DeviceConfig:
|
||||
"""
|
||||
Configuration for device settings.
|
||||
"""
|
||||
device_type = "cuda"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.device_type = "cuda"
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
class GraphOptimizationConfig:
|
||||
"""The Top-level graph optimization contral corresponds to different backends.
|
||||
- 0: dyncmic graph
|
||||
- 1: static graph
|
||||
- 2: static graph + cinn compilation backend
|
||||
"""
|
||||
graph_opt_level: int = 0
|
||||
|
||||
# CUDA Graph Config
|
||||
""" Whether to use cudagraph.
|
||||
- False: cudagraph is not used.
|
||||
- True: cudagraph is used.
|
||||
It requires that all input buffers have fixed addresses, and all
|
||||
splitting ops write their outputs to input buffers.
|
||||
- With dyncmic graph backend: ...
|
||||
- With static grpah backend: WIP
|
||||
"""
|
||||
use_cudagraph: bool = False
|
||||
"""Sizes to capture cudagraph.
|
||||
- None (default): capture sizes are inferred from llm config.
|
||||
- list[int]: capture sizes are specified as given."""
|
||||
cudagraph_capture_sizes: Optional[list[int]] = None
|
||||
""" Number of warmup runs for cudagraph. """
|
||||
cudagraph_num_of_warmups: int = 2
|
||||
"""Whether to copy input tensors for cudagraph.
|
||||
If the caller can guarantee that the same input buffers
|
||||
are always used, it can set this to False. Otherwise, it should
|
||||
set this to True."""
|
||||
cudagraph_copy_inputs: bool = False
|
||||
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
||||
CudaGraphBackend will split these operations from the static graph.
|
||||
Example usage:
|
||||
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
||||
|
||||
Note: If want to use subgraph capture functionality in a dynamic graph,
|
||||
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
||||
only to the layer where CUDA graph functionality is required.
|
||||
"""
|
||||
cudagraph_splitting_ops = Optional[list[str]]
|
||||
""""whether to use a full cuda graph for the entire forward pass rather than
|
||||
splitting certain operations such as attention into subgraphs.
|
||||
Thus this flag cannot be used together with splitting_ops."""
|
||||
full_cuda_graph: bool = False
|
||||
|
||||
max_capture_size: int = field(default=None, init=False) # type: ignore
|
||||
batch_size_to_captured_size: dict[int,
|
||||
int] = field(default=None,
|
||||
init=False) # type: ignore
|
||||
|
||||
# CINN Config ...
|
||||
|
||||
def init_with_cudagrpah_size(self,
|
||||
cudagraph_capture_sizes: list[int]) -> None:
|
||||
"""To complete the initialization of config,
|
||||
@@ -338,18 +293,67 @@ class GraphOptimizationConfig:
|
||||
|
||||
def __init__(self,
|
||||
enable_static_graph_inference: bool = False,
|
||||
use_cudagraph: bool = False,
|
||||
max_capture_batch_size: int = 64):
|
||||
""" """
|
||||
max_capture_batch_size: int = 64,
|
||||
args = None):
|
||||
"""The Top-level graph optimization contral corresponds to different backends.
|
||||
- 0: dyncmic graph
|
||||
- 1: static graph
|
||||
- 2: static graph + cinn compilation backend
|
||||
"""
|
||||
self.graph_opt_level: int = 0
|
||||
|
||||
# CUDA Graph Config
|
||||
""" Whether to use cudagraph.
|
||||
- False: cudagraph is not used.
|
||||
- True: cudagraph is used.
|
||||
It requires that all input buffers have fixed addresses, and all
|
||||
splitting ops write their outputs to input buffers.
|
||||
- With dyncmic graph backend: ...
|
||||
- With static grpah backend: WIP
|
||||
"""
|
||||
self.use_cudagraph: bool = False
|
||||
"""Sizes to capture cudagraph.
|
||||
- None (default): capture sizes are inferred from llm config.
|
||||
- list[int]: capture sizes are specified as given."""
|
||||
self.cudagraph_capture_sizes: Optional[list[int]] = None
|
||||
""" Number of warmup runs for cudagraph. """
|
||||
self.cudagraph_num_of_warmups: int = 2
|
||||
"""Whether to copy input tensors for cudagraph.
|
||||
If the caller can guarantee that the same input buffers
|
||||
are always used, it can set this to False. Otherwise, it should
|
||||
set this to True."""
|
||||
self.cudagraph_copy_inputs: bool = False
|
||||
""" In static graph, this is an operation list that does not need to be captured by the CUDA graph.
|
||||
CudaGraphBackend will split these operations from the static graph.
|
||||
Example usage:
|
||||
cudagraph_splitting_ops = ["paddle.unified_attention"]
|
||||
|
||||
Note: If want to use subgraph capture functionality in a dynamic graph,
|
||||
can manually split the model into multiple layers and apply the @support_cuda_graph decorator
|
||||
only to the layer where CUDA graph functionality is required.
|
||||
"""
|
||||
self.cudagraph_splitting_ops = Optional[list[str]]
|
||||
""""whether to use a full cuda graph for the entire forward pass rather than
|
||||
splitting certain operations such as attention into subgraphs.
|
||||
Thus this flag cannot be used together with splitting_ops."""
|
||||
self.full_cuda_graph: bool = False
|
||||
|
||||
self.max_capture_size: int = field(default=None, init=False) # type: ignore
|
||||
self.batch_size_to_captured_size: dict[int,
|
||||
int] = field(default=None,
|
||||
init=False) # type: ignore
|
||||
|
||||
# CINN Config ...
|
||||
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
capture_size = [i for i in range(1, max_capture_batch_size + 1)]
|
||||
self.init_with_cudagrpah_size(cudagraph_capture_sizes=capture_size)
|
||||
self.use_cudagraph = use_cudagraph
|
||||
#TODO(wangmingkai02): change graph_opt_level=2 when using static mode with cinn
|
||||
if enable_static_graph_inference:
|
||||
self.graph_opt_level = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoadConfig:
|
||||
"""
|
||||
Configuration for dynamic weight loading strategies
|
||||
@@ -363,37 +367,39 @@ class LoadConfig:
|
||||
- 'meta': provide RL traing worker, no_weights_load
|
||||
- None: No dynamic loading
|
||||
"""
|
||||
use_fastsafetensor: bool = False
|
||||
dynamic_load_weight: bool = False
|
||||
load_strategy: Optional[Literal['ipc', 'ipc_no_reshard', 'ipc_snapshot', 'meta']] = None
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
|
||||
self.dynamic_load_weight: bool = False
|
||||
self.load_strategy: Optional[Literal['ipc', 'ipc_no_reshard', 'ipc_snapshot', 'meta']] = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.load_strategy is not None and not self.dynamic_load_weight:
|
||||
raise ValueError("Load strategy requires dynamic_load_weight=True")
|
||||
|
||||
if self.dynamic_load_weight and self.load_strategy is None:
|
||||
raise ValueError("Must specify load_strategy when dynamic_load_weight is True")
|
||||
|
||||
|
||||
@dataclass
|
||||
class LoRAConfig:
|
||||
""" LoRA Config """
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class KVCacheConfig:
|
||||
""" KV Cache Config """
|
||||
cache_quant_dtype: str = "none"
|
||||
|
||||
|
||||
@dataclass
|
||||
class DecodingConfig:
|
||||
"""
|
||||
Configuration for decoding
|
||||
"""
|
||||
pad_token_id = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args,
|
||||
):
|
||||
self.pad_token_id = None
|
||||
for key, value in args.items():
|
||||
if hasattr(self, key):
|
||||
setattr(self, key, value)
|
||||
|
||||
@dataclass
|
||||
class FDConfig:
|
||||
@@ -411,7 +417,6 @@ class FDConfig:
|
||||
load_config: LoadConfig = field(default=None, init=True)
|
||||
quant_config: Optional[QuantConfigBase] = None
|
||||
graph_opt_config: Optional[GraphOptimizationConfig] = None
|
||||
moe_config: MoEConfig = field(default=None, init=True) # type: ignore
|
||||
decoding_config: DecodingConfig = field(default=None,
|
||||
init=True) # type: ignore
|
||||
kv_cache_config: KVCacheConfig = field(default=None,
|
||||
|
@@ -95,7 +95,7 @@ class AppendAttentionBackend(AttentionBackend):
|
||||
self.kv_num_heads: int = kv_num_heads
|
||||
self.num_heads: int = num_heads
|
||||
self.head_dim: int = fd_config.model_config.head_dim
|
||||
self.num_layers: int = fd_config.model_config.num_layers
|
||||
self.num_layers: int = fd_config.model_config.num_hidden_layers
|
||||
self.max_partition_size: int = int(
|
||||
os.getenv("FLAGS_max_partition_size", 32768))
|
||||
|
||||
|
@@ -67,10 +67,10 @@ class Attention(nn.Layer):
|
||||
ValueError: If the `v_head_dim` is less than 0.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads: int = fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_degree
|
||||
self.num_heads: int = fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_size
|
||||
self.head_dim: int = fd_config.model_config.head_dim
|
||||
self.kv_num_heads: int = \
|
||||
max(1, fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_degree)
|
||||
max(1, fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_size)
|
||||
self.layer_id: int = layer_id
|
||||
self.v_head_dim: int = v_head_dim if v_head_dim > 0 else self.head_dim
|
||||
self.rope_type: str = rope_type
|
||||
|
@@ -96,7 +96,7 @@ class FlashAttentionBackend(AttentionBackend):
|
||||
self.head_dim = fd_config.model_config.head_dim
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.block_size = fd_config.parallel_config.block_size
|
||||
self.num_layers: int = fd_config.model_config.num_layers
|
||||
self.num_layers: int = fd_config.model_config.num_hidden_layers
|
||||
|
||||
self.speculative_method = fd_config.speculative_config.method
|
||||
self.use_speculate = self.speculative_method is not None
|
||||
|
@@ -102,7 +102,7 @@ class IluvatarAttnBackend(AttentionBackend):
|
||||
self.head_dim = head_dim
|
||||
# note: scale need to change if using MLA
|
||||
self.attention_metadata.scale = 1.0 / sqrt(head_dim)
|
||||
self.num_layers = llm_config.model_config.num_layers
|
||||
self.num_layers = llm_config.model_config.num_hidden_layers
|
||||
self.record_block_table_metadata = {}
|
||||
self.only_use_flash_attn = int(
|
||||
os.getenv("FD_ILUVATAR_ONLY_USE_FLASH_ATTN", 0)) == 1
|
||||
|
@@ -113,18 +113,18 @@ class MLAAttentionBackend(AttentionBackend):
|
||||
self.kv_num_heads: int = kv_num_heads
|
||||
self.num_heads: int = num_heads
|
||||
self.head_dim: int = fd_config.model_config.head_dim
|
||||
self.num_layers: int = fd_config.model_config.num_layers
|
||||
self.num_layers: int = fd_config.model_config.num_hidden_layers
|
||||
|
||||
# For Multi Head Latent Attention
|
||||
self.kv_lora_rank: int = fd_config.model_config.deepseekv3.kv_lora_rank
|
||||
self.qk_rope_head_dim: int = fd_config.model_config.deepseekv3.qk_rope_head_dim
|
||||
self.qk_head_dim: int = fd_config.model_config.deepseekv3.qk_nope_head_dim \
|
||||
+ fd_config.model_config.deepseekv3.qk_rope_head_dim
|
||||
self.kv_lora_rank: int = fd_config.model_config.kv_lora_rank
|
||||
self.qk_rope_head_dim: int = fd_config.model_config.qk_rope_head_dim
|
||||
self.qk_head_dim: int = fd_config.model_config.qk_nope_head_dim \
|
||||
+ fd_config.model_config.qk_rope_head_dim
|
||||
self.attn_softmax_scale: float = self.qk_head_dim**-0.5
|
||||
if fd_config.model_config.deepseekv3.rope_scaling:
|
||||
mscale_all_dim = fd_config.model_config.deepseekv3.rope_scaling.get(
|
||||
if fd_config.model_config.rope_scaling:
|
||||
mscale_all_dim = fd_config.model_config.rope_scaling.get(
|
||||
"mscale_all_dim", False) # 1.0
|
||||
scaling_factor = fd_config.model_config.deepseekv3.rope_scaling[
|
||||
scaling_factor = fd_config.model_config.rope_scaling[
|
||||
"factor"] # 40
|
||||
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
|
||||
self.attn_softmax_scale = self.attn_softmax_scale * mscale * mscale
|
||||
|
@@ -22,7 +22,7 @@ def init_rank_and_device_id(fd_config: FDConfig):
|
||||
|
||||
"""
|
||||
rank = (fd_config.parallel_config.expert_parallel_rank *
|
||||
fd_config.parallel_config.tensor_parallel_degree + fd_config.parallel_config.tensor_parallel_rank)
|
||||
fd_config.parallel_config.tensor_parallel_size + fd_config.parallel_config.tensor_parallel_rank)
|
||||
|
||||
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", None)
|
||||
|
||||
|
@@ -95,7 +95,7 @@ class XPUAttentionBackend(AttentionBackend):
|
||||
self.kv_num_heads: int = kv_num_heads
|
||||
self.num_heads: int = num_heads
|
||||
self.head_dim: int = head_dim
|
||||
self.num_layers: int = fd_config.model_config.num_layers
|
||||
self.num_layers: int = fd_config.model_config.num_hidden_layers
|
||||
|
||||
# pd_disaggregation
|
||||
self.use_pd_disaggregation: int = int(
|
||||
|
@@ -88,7 +88,7 @@ class GCUFlashAttnBackend(AttentionBackend):
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = head_dim
|
||||
self.scaling = 1.0 / (self.head_dim**0.5)
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
self.position_ids_base = paddle.arange(self.max_seq_len)
|
||||
|
||||
# TODO(zhengjun): Need to adapt the allocation logic and
|
||||
|
@@ -88,7 +88,7 @@ class GCUMemEfficientAttnBackend(AttentionBackend):
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = head_dim
|
||||
self.scaling = 1.0 / (self.head_dim**0.5)
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
self.position_ids_base = paddle.arange(self.max_seq_len)
|
||||
|
||||
# TODO(zhengjun): Need to adapt the allocation logic and
|
||||
|
@@ -59,13 +59,11 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
self.world_size: int = hcg.get_model_parallel_world_size()
|
||||
self.ring_id: int = hcg.get_model_parallel_group().id
|
||||
self.use_rope: bool = fd_config.model_config.use_rope
|
||||
self.rope_head_dim: int = fd_config.model_config.rope_head_dim
|
||||
self.use_ep: bool = fd_config.parallel_config.use_ep
|
||||
self.hidden_dropout_prob: float = fd_config.model_config.hidden_dropout_prob
|
||||
self.initializer_range: float = fd_config.model_config.initializer_range
|
||||
self.sequence_parallel: bool = fd_config.parallel_config.sequence_parallel
|
||||
self.max_position_embeddings: int = fd_config.model_config.max_position_embeddings
|
||||
self.freeze_embedding: bool = fd_config.model_config.freeze_embedding
|
||||
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
|
||||
self.params_dtype: str = params_dtype
|
||||
|
||||
@@ -104,15 +102,7 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
)
|
||||
|
||||
self.prefix = prefix
|
||||
|
||||
if self.freeze_embedding:
|
||||
self.word_embeddings.weight.learning_rate = 0.0
|
||||
if not self.use_rope:
|
||||
self.position_embeddings.weight.learning_rate = 0.0
|
||||
|
||||
self.dropout = nn.Dropout(self.hidden_dropout_prob)
|
||||
self.rope_head_dim_shape_tensor = paddle.ones((self.rope_head_dim),
|
||||
dtype="int8")
|
||||
|
||||
def load_state_dict(self, state_dict: Dict[str,
|
||||
paddle.Tensor | np.ndarray]):
|
||||
@@ -122,6 +112,7 @@ class VocabParallelEmbedding(nn.Layer):
|
||||
Args:
|
||||
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
||||
"""
|
||||
a = state_dict[self.prefix + ".weight"]
|
||||
if self.tie_word_embeddings:
|
||||
self.word_embeddings.weight.set_value(
|
||||
get_tensor(state_dict[self.prefix + ".weight"]).astype(
|
||||
|
@@ -266,7 +266,7 @@ class ColumnParallelLinear(LinearBase):
|
||||
with_bias=with_bias,
|
||||
add_bias=add_bias,
|
||||
skip_quant=skip_quant)
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.input_size = input_size
|
||||
self.output_size = divide(
|
||||
output_size,
|
||||
@@ -348,7 +348,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
|
||||
"""
|
||||
self.activation = activation
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
super().__init__(fd_config=fd_config,
|
||||
prefix=prefix,
|
||||
@@ -410,7 +410,7 @@ class QKVParallelLinear(ColumnParallelLinear):
|
||||
self.kv_num_heads = fd_config.model_config.num_key_value_heads
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.head_dim = fd_config.model_config.head_dim
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.num_heads_per_rank = divide(self.num_heads, self.nranks)
|
||||
if self.kv_num_heads < self.nranks and self.nranks % self.kv_num_heads == 0:
|
||||
self.kv_num_heads_per_rank = 1
|
||||
@@ -545,7 +545,7 @@ class RowParallelLinear(LinearBase):
|
||||
skip_quant=skip_quant)
|
||||
self.fd_config = fd_config
|
||||
self.skip_quant = False
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.head_dim = fd_config.model_config.head_dim
|
||||
self.num_heads = fd_config.model_config.num_attention_heads // self.nranks
|
||||
@@ -638,7 +638,7 @@ class KVBatchLinear(LinearBase):
|
||||
with_bias (bool): Whether to include bias or not. Defaults to False.
|
||||
skip_quant (bool): Whether to skip quantization. Defaults to False.
|
||||
"""
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
|
@@ -49,7 +49,7 @@ class MoEMethodBase(QuantMethodBase):
|
||||
from .ep import EPDecoderRunner
|
||||
self.ep_decoder_runner = EPDecoderRunner(
|
||||
layer.top_k, layer.hidden_size, layer.num_experts,
|
||||
layer.moe_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.model_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.ep_size, layer.ep_rank)
|
||||
else:
|
||||
from .ep import EPPrefillRunner
|
||||
|
@@ -14,7 +14,6 @@
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddleformers.utils.log import logger
|
||||
@@ -23,8 +22,8 @@ import fastdeploy
|
||||
import fastdeploy.model_executor.ops.gpu.deep_gemm as deep_gemm
|
||||
from fastdeploy.distributed.communication_op import \
|
||||
tensor_model_parallel_all_reduce
|
||||
from fastdeploy.model_executor.ops.gpu import count_tokens_per_expert_func
|
||||
from fastdeploy.model_executor.layers.utils import get_tensor
|
||||
from fastdeploy.model_executor.ops.gpu import count_tokens_per_expert_func
|
||||
|
||||
from ..utils import create_and_set_parameter
|
||||
from .fused_moe_backend_base import MoEMethodBase
|
||||
@@ -242,7 +241,7 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
|
||||
[
|
||||
layer.num_local_experts,
|
||||
layer.ep_size *
|
||||
layer.moe_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.model_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.moe_intermediate_size * 2,
|
||||
],
|
||||
dtype=paddle.bfloat16,
|
||||
@@ -252,7 +251,7 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
|
||||
[
|
||||
layer.num_local_experts,
|
||||
layer.ep_size *
|
||||
layer.moe_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.model_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.hidden_size,
|
||||
],
|
||||
dtype=paddle.bfloat16,
|
||||
|
@@ -72,8 +72,8 @@ class FusedMoE(nn.Layer):
|
||||
self.layer_idx = layer_idx
|
||||
self.reduce_results = reduce_results
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.ep_size = fd_config.parallel_config.expert_parallel_degree
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
self.ep_size = fd_config.parallel_config.expert_parallel_size
|
||||
self.ep_rank = fd_config.parallel_config.expert_parallel_rank
|
||||
|
||||
assert (self.tp_size >= 1 and self.ep_size == 1) or \
|
||||
@@ -81,7 +81,6 @@ class FusedMoE(nn.Layer):
|
||||
'MoE only support parallelism on TP or EP dimension.'
|
||||
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.moe_config = fd_config.moe_config
|
||||
self.num_experts = num_experts
|
||||
self.num_local_experts = self.num_experts // self.ep_size
|
||||
|
||||
@@ -141,7 +140,7 @@ class FusedMoE(nn.Layer):
|
||||
shape=gate_weight_shape,
|
||||
dtype="float32",
|
||||
)
|
||||
if self.moe_config.moe_use_aux_free:
|
||||
if self.model_config.moe_use_aux_free:
|
||||
self.gate_correction_bias = self.create_parameter(
|
||||
shape=gate_correction_bias_shape,
|
||||
dtype="float32",
|
||||
|
@@ -43,7 +43,7 @@ def load_ep_checkpoint(model_path: str,
|
||||
filtered_map = {k: v for k, v in weight_list.items() if "experts" not in k}
|
||||
num_local_ffn_keys = []
|
||||
|
||||
for i in range(config.moe_layer_start_index, config.num_layers):
|
||||
for i in range(config.moe_layer_start_index, config.num_hidden_layers):
|
||||
for j in range(
|
||||
config.num_experts_start_offset,
|
||||
config.num_experts_start_offset + config.num_experts_per_rank,
|
||||
@@ -261,7 +261,7 @@ def load_composite_checkpoint(
|
||||
and os.path.isdir(os.path.join(model_path, f))
|
||||
]
|
||||
if len(rank_dirs) > 1:
|
||||
if fd_config.parallel_config.tensor_parallel_degree != len(
|
||||
if fd_config.parallel_config.tensor_parallel_size != len(
|
||||
rank_dirs):
|
||||
raise ValueError(
|
||||
f"Your model only supports loading with tp{len(rank_dirs)}"
|
||||
@@ -283,7 +283,7 @@ def load_composite_checkpoint(
|
||||
else:
|
||||
state_dict = load_tp_checkpoint(model_path,
|
||||
cls,
|
||||
fd_config.model_config,
|
||||
fd_config.model_config.pretrained_config,
|
||||
return_numpy=return_numpy)
|
||||
if not state_dict:
|
||||
raise ValueError("weight not found in state_dict !")
|
||||
|
@@ -27,6 +27,7 @@ from paddleformers.utils.log import logger
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.distributed.communication_op import \
|
||||
tensor_model_parallel_all_reduce
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
@@ -40,7 +41,6 @@ from fastdeploy.model_executor.layers.rotary_embedding import \
|
||||
DeepseekScalingRotaryEmbedding
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.platforms import current_platform
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
if current_platform.is_cuda():
|
||||
from fastdeploy.model_executor.ops.gpu import \
|
||||
@@ -109,7 +109,7 @@ class DeepSeekV3MoE(nn.Layer):
|
||||
prefix: str) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
weight_key_map = {
|
||||
"gate_weight_key": f"{prefix}.gate.weight",
|
||||
@@ -124,23 +124,23 @@ class DeepSeekV3MoE(nn.Layer):
|
||||
self.fused_moe = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
reduce_results=False,
|
||||
moe_intermediate_size=fd_config.model_config.deepseekv3.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size,
|
||||
num_experts=fd_config.model_config.deepseekv3.n_routed_experts,
|
||||
top_k=fd_config.model_config.deepseekv3.num_experts_per_tok,
|
||||
topk_method=fd_config.model_config.deepseekv3.topk_method,
|
||||
topk_group=fd_config.model_config.deepseekv3.topk_group,
|
||||
n_group=fd_config.model_config.deepseekv3.n_group,
|
||||
routed_scaling_factor=fd_config.model_config.deepseekv3.
|
||||
num_experts=fd_config.model_config.n_routed_experts,
|
||||
top_k=fd_config.model_config.num_experts_per_tok,
|
||||
topk_method=fd_config.model_config.topk_method,
|
||||
topk_group=fd_config.model_config.topk_group,
|
||||
n_group=fd_config.model_config.n_group,
|
||||
routed_scaling_factor=fd_config.model_config.
|
||||
routed_scaling_factor,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map,
|
||||
)
|
||||
|
||||
self.num_shared_experts = fd_config.model_config.deepseekv3.n_shared_experts
|
||||
self.num_shared_experts = fd_config.model_config.n_shared_experts
|
||||
shared_experts_intermediate_size = (
|
||||
self.num_shared_experts *
|
||||
fd_config.model_config.deepseekv3.moe_intermediate_size)
|
||||
fd_config.model_config.moe_intermediate_size)
|
||||
|
||||
self.shared_experts = DeepSeekV3MLP(
|
||||
fd_config=fd_config,
|
||||
@@ -178,18 +178,18 @@ class DeepseekV3MLAAttention(nn.Layer):
|
||||
prefix: str = "") -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.num_attention_heads = fd_config.model_config.num_attention_heads
|
||||
self.num_attention_heads_tp = self.num_attention_heads // self.tp_size
|
||||
|
||||
# MLA
|
||||
self.qk_nope_head_dim = fd_config.model_config.deepseekv3.qk_nope_head_dim
|
||||
self.qk_rope_head_dim = fd_config.model_config.deepseekv3.qk_rope_head_dim
|
||||
self.qk_nope_head_dim = fd_config.model_config.qk_nope_head_dim
|
||||
self.qk_rope_head_dim = fd_config.model_config.qk_rope_head_dim
|
||||
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
|
||||
self.v_head_dim = fd_config.model_config.deepseekv3.v_head_dim
|
||||
self.q_lora_rank = fd_config.model_config.deepseekv3.q_lora_rank
|
||||
self.kv_lora_rank = fd_config.model_config.deepseekv3.kv_lora_rank
|
||||
self.v_head_dim = fd_config.model_config.v_head_dim
|
||||
self.q_lora_rank = fd_config.model_config.q_lora_rank
|
||||
self.kv_lora_rank = fd_config.model_config.kv_lora_rank
|
||||
|
||||
self.attn_softmax_scale = self.qk_head_dim**-0.5
|
||||
self.rope_theta = fd_config.model_config.rope_theta
|
||||
@@ -255,7 +255,7 @@ class DeepseekV3MLAAttention(nn.Layer):
|
||||
qk_nope_head_dim=self.qk_nope_head_dim,
|
||||
v_head_dim=self.v_head_dim)
|
||||
|
||||
self.rope_scaling = fd_config.model_config.deepseekv3.rope_scaling
|
||||
self.rope_scaling = fd_config.model_config.rope_scaling
|
||||
if self.rope_scaling:
|
||||
mscale_all_dim = self.rope_scaling.get("mscale_all_dim", False)
|
||||
scaling_factor = self.rope_scaling["factor"]
|
||||
@@ -449,9 +449,9 @@ class DeepSeekV3DecoderLayer(nn.Layer):
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
if (fd_config.model_config.deepseekv3.n_routed_experts is not None
|
||||
if (fd_config.model_config.n_routed_experts is not None
|
||||
and layer_id
|
||||
>= fd_config.model_config.deepseekv3.first_k_dense_replace):
|
||||
>= fd_config.model_config.first_k_dense_replace):
|
||||
self.mlp = DeepSeekV3MoE(
|
||||
fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
@@ -525,8 +525,8 @@ class DeepSeekV3Model(nn.Layer):
|
||||
Initializer for the DeepSeekV3Model class.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "deepseek_v3"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "deepseek_v3"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config,
|
||||
@@ -539,7 +539,7 @@ class DeepSeekV3Model(nn.Layer):
|
||||
self.decoder_layers = nn.LayerList([
|
||||
DeepSeekV3DecoderLayer(
|
||||
fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -755,5 +755,5 @@ class DeepSeekV3PretrainedModel(PretrainedModel):
|
||||
|
||||
return final_actions
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
||||
return mappings
|
||||
|
@@ -25,7 +25,7 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
@@ -54,7 +54,7 @@ class Ernie4_5_MLP(nn.Layer):
|
||||
reduce_results: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
@@ -179,16 +179,16 @@ class Ernie4_5_MoE(nn.Layer):
|
||||
|
||||
self.fused_moe = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
moe_intermediate_size=fd_config.moe_config.moe_intermediate_size,
|
||||
num_experts=fd_config.moe_config.num_experts,
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
|
||||
num_experts=fd_config.model_config.moe_num_experts,
|
||||
top_k=fd_config.model_config.moe_k,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map,
|
||||
)
|
||||
|
||||
self.num_shared_experts = fd_config.moe_config.moe_num_shared_experts
|
||||
self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
|
||||
if self.num_shared_experts > 0:
|
||||
shared_experts_hidden_dim = self.num_shared_experts * fd_config.moe_config.moe_intermediate_size
|
||||
shared_experts_hidden_dim = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
|
||||
self.shared_experts = Ernie4_5_MLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=shared_experts_hidden_dim,
|
||||
@@ -271,8 +271,8 @@ class Ernie4_5_DecoderLayer(nn.Layer):
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
if (fd_config.moe_config.num_experts is not None
|
||||
and layer_id >= fd_config.moe_config.moe_layer_start_index):
|
||||
if (fd_config.model_config.moe_num_experts is not None
|
||||
and layer_id >= fd_config.model_config.moe_layer_start_index):
|
||||
self.mlp = Ernie4_5_MoE(
|
||||
fd_config=fd_config,
|
||||
layer_id=layer_id,
|
||||
@@ -281,7 +281,7 @@ class Ernie4_5_DecoderLayer(nn.Layer):
|
||||
else:
|
||||
self.mlp = Ernie4_5_MLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
|
||||
@@ -346,20 +346,20 @@ class Ernie4_5_Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "ernie"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "ernie"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype(),
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"))
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"))
|
||||
|
||||
self.hidden_layers = nn.LayerList([
|
||||
Ernie4_5_DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -367,7 +367,7 @@ class Ernie4_5_Model(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -466,8 +466,8 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
|
||||
shape=[0, self.fd_config.model_config.hidden_size],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
)
|
||||
for i in range(self.fd_config.moe_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_layers):
|
||||
for i in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
self.model.hidden_layers[i].mlp.fused_moe(fake_hidden_states)
|
||||
|
||||
def forward(
|
||||
@@ -559,7 +559,7 @@ class Ernie4_5_PretrainedModel(PretrainedModel):
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
"""
|
||||
get_tensor_parallel_mappings
|
||||
"""
|
||||
@@ -603,7 +603,7 @@ class Ernie4_5_PretrainedModel(PretrainedModel):
|
||||
)
|
||||
return final_actions
|
||||
mappings = get_tensor_parallel_split_mappings(
|
||||
config.num_layers,
|
||||
config.num_hidden_layers,
|
||||
config.moe_num_experts,
|
||||
config.moe_layer_start_index,
|
||||
config.prefix_name,
|
||||
|
@@ -25,12 +25,12 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.layers.mtp_linear import ParallelEHProjection
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_DecoderLayer
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Ernie4_5_MTPPretrainedModel(PretrainedModel):
|
||||
@@ -47,7 +47,7 @@ class Ernie4_5_MTPPretrainedModel(PretrainedModel):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
"""
|
||||
get_tensor_parallel_mappings
|
||||
"""
|
||||
@@ -237,7 +237,7 @@ class Ernie4_5_MTPPretrainedModel(PretrainedModel):
|
||||
|
||||
moe_num_experts = 0
|
||||
mappings = get_tensor_parallel_split_mappings(
|
||||
config.num_layers,
|
||||
config.num_hidden_layers,
|
||||
moe_num_experts,
|
||||
config.moe_layer_start_index,
|
||||
)
|
||||
@@ -262,13 +262,13 @@ class Ernie4_5_MTPModel(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
self.embeddings = fd_config.speculative_config.sharing_model.model.embeddings
|
||||
|
||||
self.hidden_layers = nn.LayerList([
|
||||
Ernie4_5_DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -398,8 +398,8 @@ class Ernie4_5_MTPForCausalLM(ModelForCasualLM):
|
||||
shape=[0, self.fd_config.model_config.hidden_size],
|
||||
dtype=paddle.get_default_dtype(),
|
||||
)
|
||||
for i in range(self.fd_config.moe_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_layers):
|
||||
for i in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
self.model.hidden_layers[i].mlp.fused_moe(fake_hidden_states)
|
||||
|
||||
def forward(
|
||||
|
@@ -1,167 +0,0 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import copy
|
||||
|
||||
from fastdeploy.config import ModelConfig
|
||||
|
||||
from .dfnrope.modeling import DFNRopeVisionTransformerConfig
|
||||
|
||||
__all__ = [
|
||||
"Ernie4_5_VLMoeConfig",
|
||||
]
|
||||
|
||||
|
||||
class Ernie4_5_VLMoeConfig(ModelConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`~ErnieModel`]. It is used to instantiate an Ernie
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the Ernie-7B.
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 32000):
|
||||
Vocabulary size of the Ernie model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`~ErnieModel`] or [`~TFErnieModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
Example:
|
||||
```python
|
||||
>>> from paddleformers.transformer import ErnieModel, ErnieConfig
|
||||
|
||||
>>> # Initializing a Ernie ernie-7b style configuration
|
||||
>>> configuration = ErnieConfig()
|
||||
|
||||
>>> # Initializing a model from the ernie-7b style configuration
|
||||
>>> model = ErnieModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "erniemoevl"
|
||||
attribute_map = {
|
||||
"n_positions": "max_position_embeddings",
|
||||
"n_embd": "hidden_size",
|
||||
"n_layer": "num_hidden_layers",
|
||||
"n_head": "num_attention_heads",
|
||||
"n_inner": "intermediate_size",
|
||||
"activation_function": "hidden_act",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vision_config=None,
|
||||
im_patch_id=None,
|
||||
pixel_hidden_size=None, # None for fuyu
|
||||
modality_detach=False,
|
||||
temporal_conv_size=2,
|
||||
spatial_conv_size=2,
|
||||
mm_vocab_size=0, # vocab for mm specialtokens
|
||||
max_text_id=None,
|
||||
use_temporal_conv=True,
|
||||
moe_use_size_all2all=False,
|
||||
moe_num_attn_experts=False,
|
||||
moe_dense_experts_token_type_id: int = 3,
|
||||
moe_use_hard_gate: bool = True,
|
||||
moe_fuse_experts: bool = False,
|
||||
moe_use_token_type_bias: bool = False,
|
||||
disable_ffn_model_parallel=False,
|
||||
fuse_attn_ffn=True,
|
||||
rope_3d=True,
|
||||
freq_allocation=20,
|
||||
using_precision_check=False,
|
||||
use_recompute_resampler=False,
|
||||
resampler_fuse_rms_norm=False,
|
||||
moe_layer_feed_fake_token=False,
|
||||
moe_num_experts=0,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.vision_config = DFNRopeVisionTransformerConfig(
|
||||
**vision_config) if vision_config else None
|
||||
self.im_patch_id = im_patch_id
|
||||
self.pixel_hidden_size = pixel_hidden_size
|
||||
self.modality_detach = modality_detach
|
||||
self.temporal_conv_size = temporal_conv_size
|
||||
self.spatial_conv_size = spatial_conv_size
|
||||
self.mm_vocab_size = mm_vocab_size
|
||||
self.max_text_id = max_text_id
|
||||
self.use_temporal_conv = use_temporal_conv
|
||||
|
||||
self.moe_use_size_all2all = moe_use_size_all2all
|
||||
self.moe_num_attn_experts = moe_num_attn_experts
|
||||
self.moe_dense_experts_token_type_id = moe_dense_experts_token_type_id
|
||||
self.moe_use_hard_gate = moe_use_hard_gate
|
||||
self.moe_fuse_experts = moe_fuse_experts
|
||||
self.moe_use_token_type_bias = moe_use_token_type_bias
|
||||
self.disable_ffn_model_parallel = disable_ffn_model_parallel
|
||||
|
||||
self.fuse_attn_ffn = fuse_attn_ffn
|
||||
self.rope_3d = rope_3d
|
||||
self.freq_allocation = freq_allocation
|
||||
self.using_precision_check = using_precision_check
|
||||
self.use_recompute_resampler = use_recompute_resampler
|
||||
self.resampler_fuse_rms_norm = resampler_fuse_rms_norm
|
||||
self.moe_layer_feed_fake_token = moe_layer_feed_fake_token
|
||||
self.moe_num_experts = moe_num_experts
|
||||
|
||||
@property
|
||||
def multimodel_experts(self) -> bool:
|
||||
"""是否有多种类型的experts."""
|
||||
return isinstance(self.moe_num_experts,
|
||||
(tuple, list)) and len(self.moe_num_experts) > 1
|
||||
|
||||
@property
|
||||
def use_moe(self) -> bool:
|
||||
"""
|
||||
Check if model is using MoE architecture.
|
||||
|
||||
Returns:
|
||||
bool: True if moe_num_experts > 0, False otherwise
|
||||
"""
|
||||
return sum(
|
||||
self.moe_num_experts
|
||||
) > 0 if self.multimodel_experts else self.moe_num_experts > 0
|
||||
|
||||
def to_dict(self, saving_file=False):
|
||||
"""to_dict"""
|
||||
output = copy.deepcopy(self.__dict__)
|
||||
if self.vision_config:
|
||||
output["vision_config"] = (
|
||||
self.vision_config.to_diff_dict() if isinstance(
|
||||
self.vision_config,
|
||||
(DFNRopeVisionTransformerConfig)) else self.vision_config)
|
||||
|
||||
output["model_type"] = self.__class__.model_type
|
||||
return output
|
@@ -72,8 +72,8 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
prefix: str) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
moe_layer_start_index = fd_config.moe_config.moe_layer_start_index
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_size
|
||||
moe_layer_start_index = fd_config.model_config.moe_layer_start_index
|
||||
if isinstance(moe_layer_start_index, int):
|
||||
text_moe_layer_start_index = moe_layer_start_index
|
||||
image_moe_layer_start_index = moe_layer_start_index
|
||||
@@ -81,10 +81,10 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
text_moe_layer_start_index = moe_layer_start_index[0]
|
||||
image_moe_layer_start_index = moe_layer_start_index[1]
|
||||
|
||||
moe_layer_end_index = fd_config.moe_config.moe_layer_end_index
|
||||
moe_layer_end_index = fd_config.model_config.moe_layer_end_index
|
||||
if moe_layer_end_index is None:
|
||||
text_moe_layer_end_index = fd_config.model_config.num_layers
|
||||
image_moe_layer_end_index = fd_config.model_config.num_layers
|
||||
text_moe_layer_end_index = fd_config.model_config.num_hidden_layers
|
||||
image_moe_layer_end_index = fd_config.model_config.num_hidden_layers
|
||||
elif isinstance(moe_layer_end_index, int):
|
||||
text_moe_layer_end_index = moe_layer_end_index
|
||||
image_moe_layer_end_index = moe_layer_end_index
|
||||
@@ -107,11 +107,11 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
self.mlp_text = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
reduce_results=False,
|
||||
moe_intermediate_size=fd_config.moe_config.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size[0],
|
||||
num_experts=fd_config.moe_config.num_experts[0],
|
||||
num_experts=fd_config.model_config.moe_num_experts[0],
|
||||
expert_id_offset=0,
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
top_k=fd_config.model_config.moe_k,
|
||||
layer_idx=layer_id,
|
||||
moe_tag="Text",
|
||||
weight_key_map=weight_key_map,
|
||||
@@ -120,7 +120,7 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
else:
|
||||
self.mlp_text = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}",
|
||||
)
|
||||
|
||||
@@ -139,11 +139,11 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
self.mlp_image = FusedMoE(
|
||||
fd_config=fd_config,
|
||||
reduce_results=False,
|
||||
moe_intermediate_size=fd_config.moe_config.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size[1],
|
||||
num_experts=fd_config.moe_config.num_experts[1],
|
||||
expert_id_offset=fd_config.moe_config.num_experts[0],
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
num_experts=fd_config.model_config.moe_num_experts[1],
|
||||
expert_id_offset=fd_config.model_config.moe_num_experts[0],
|
||||
top_k=fd_config.model_config.moe_k,
|
||||
layer_idx=layer_id,
|
||||
moe_tag="Image",
|
||||
weight_key_map=weight_key_map,
|
||||
@@ -152,16 +152,16 @@ class Ernie4_5_VLMoE(nn.Layer):
|
||||
else:
|
||||
self.mlp_image = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}",
|
||||
)
|
||||
|
||||
self.num_shared_experts = fd_config.moe_config.moe_num_shared_experts
|
||||
self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
|
||||
if self.num_shared_experts > 0:
|
||||
self.share_experts = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=self.num_shared_experts *
|
||||
fd_config.moe_config.moe_intermediate_size[0],
|
||||
fd_config.model_config.moe_intermediate_size[0],
|
||||
prefix=f"{prefix}.shared_experts",
|
||||
reduce_results=False,
|
||||
)
|
||||
@@ -235,15 +235,15 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
|
||||
super().__init__()
|
||||
layer_id = int(prefix.split(sep='.')[-1])
|
||||
|
||||
moe_layer_start_index = fd_config.moe_config.moe_layer_start_index
|
||||
moe_layer_start_index = fd_config.model_config.moe_layer_start_index
|
||||
if isinstance(moe_layer_start_index, list):
|
||||
min_moe_layer_start_index = min(moe_layer_start_index)
|
||||
else:
|
||||
min_moe_layer_start_index = moe_layer_start_index
|
||||
|
||||
max_moe_layer_end_index = fd_config.model_config.num_layers
|
||||
if fd_config.moe_config.moe_layer_end_index is not None:
|
||||
moe_layer_end_index = fd_config.moe_config.moe_layer_end_index
|
||||
max_moe_layer_end_index = fd_config.model_config.num_hidden_layers
|
||||
if fd_config.model_config.moe_layer_end_index is not None:
|
||||
moe_layer_end_index = fd_config.model_config.moe_layer_end_index
|
||||
if isinstance(moe_layer_start_index, list):
|
||||
max_moe_layer_end_index = max(moe_layer_end_index)
|
||||
else:
|
||||
@@ -257,7 +257,7 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
|
||||
|
||||
assert min_moe_layer_start_index <= max_moe_layer_end_index
|
||||
|
||||
if (fd_config.moe_config.num_experts is not None
|
||||
if (fd_config.model_config.moe_num_experts is not None
|
||||
and layer_id >= min_moe_layer_start_index
|
||||
and layer_id <= max_moe_layer_end_index):
|
||||
self.mlp = Ernie4_5_VLMoE(
|
||||
@@ -268,7 +268,7 @@ class Ernie4_5_VLDecoderLayer(nn.Layer):
|
||||
else:
|
||||
self.mlp = Ernie4_5_VLMLP(
|
||||
fd_config=fd_config,
|
||||
intermediate_size=fd_config.model_config.ffn_hidden_size,
|
||||
intermediate_size=fd_config.model_config.intermediate_size,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
|
||||
@@ -337,23 +337,23 @@ class Ernie4_5_VLModel(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
self.im_patch_id = fd_config.moe_config.im_patch_id
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
self.im_patch_id = fd_config.model_config.im_patch_id
|
||||
self._dtype = fd_config.model_config.dtype
|
||||
fd_config.model_config.prefix_name = "ernie"
|
||||
fd_config.model_config.pretrained_config.prefix_name = "ernie"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.hidden_layers = nn.LayerList([
|
||||
Ernie4_5_VLDecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -361,7 +361,7 @@ class Ernie4_5_VLModel(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -748,7 +748,7 @@ class Ernie4_5_VLPretrainedModel(PretrainedModel):
|
||||
moe_layer_start_index = config.moe_layer_start_index
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(
|
||||
config.num_layers,
|
||||
config.num_hidden_layers,
|
||||
config.moe_num_experts,
|
||||
moe_layer_start_index,
|
||||
config.prefix_name,
|
||||
|
@@ -53,7 +53,7 @@ class ModelForCasualLM(nn.Layer, ABC):
|
||||
"""
|
||||
Args:
|
||||
configs (dict): Configurations including parameters such as max_dec_len, min_dec_len, decode_strategy,
|
||||
ori_vocab_size, use_topp_sampling, etc.
|
||||
vocab_size, use_topp_sampling, etc.
|
||||
"""
|
||||
super(ModelForCasualLM, self).__init__()
|
||||
self.fd_config = configs
|
||||
|
@@ -24,6 +24,7 @@ from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
@@ -34,7 +35,6 @@ from fastdeploy.model_executor.layers.linear import (
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen2MLP(nn.Layer):
|
||||
@@ -47,12 +47,12 @@ class Qwen2MLP(nn.Layer):
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
input_size=fd_config.model_config.hidden_size,
|
||||
output_size=fd_config.model_config.ffn_hidden_size * 2,
|
||||
output_size=fd_config.model_config.intermediate_size * 2,
|
||||
with_bias=False,
|
||||
activation=fd_config.model_config.hidden_act,
|
||||
)
|
||||
@@ -60,7 +60,7 @@ class Qwen2MLP(nn.Layer):
|
||||
self.down_proj = RowParallelLinear(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
input_size=fd_config.model_config.ffn_hidden_size,
|
||||
input_size=fd_config.model_config.intermediate_size,
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
with_bias=False,
|
||||
)
|
||||
@@ -227,21 +227,21 @@ class Qwen2Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "qwen2"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "qwen2"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen2DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -249,7 +249,7 @@ class Qwen2Model(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -427,6 +427,6 @@ class Qwen2PretrainedModel(PretrainedModel):
|
||||
|
||||
return final_actions
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
||||
|
||||
return mappings
|
||||
|
@@ -23,7 +23,8 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
@@ -34,7 +35,6 @@ from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen3MLP(Qwen2MLP):
|
||||
@@ -59,7 +59,7 @@ class Qwen3Attention(nn.Layer):
|
||||
self.qkv_proj = QKVParallelLinear(fd_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
with_bias=False)
|
||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
fd_config,
|
||||
@@ -85,7 +85,7 @@ class Qwen3Attention(nn.Layer):
|
||||
prefix=f"{prefix}.k_norm",
|
||||
begin_norm_axis=2)
|
||||
|
||||
nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
num_kv_heads_replicas = max(1, nranks // fd_config.model_config.num_key_value_heads)
|
||||
self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks
|
||||
self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim * num_kv_heads_replicas // nranks
|
||||
@@ -163,21 +163,21 @@ class Qwen3Model(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "model"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "model"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config=fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen3DecoderLayer(
|
||||
fd_config=fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -185,7 +185,7 @@ class Qwen3Model(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=fd_config.model_config.rms_norm_eps,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -307,7 +307,7 @@ class Qwen3PretrainedModel(PretrainedModel):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
|
||||
from paddleformers.transformers.conversion_utils import \
|
||||
split_or_merge_func
|
||||
@@ -358,5 +358,5 @@ class Qwen3PretrainedModel(PretrainedModel):
|
||||
|
||||
return final_actions
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers)
|
||||
return mappings
|
||||
|
@@ -23,20 +23,19 @@ from paddle import nn
|
||||
from paddleformers.transformers import PretrainedModel
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, ModelConfig
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.graph_optimization.decorator import \
|
||||
support_graph_optimization
|
||||
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
||||
from fastdeploy.model_executor.layers.attention.attention import Attention
|
||||
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
||||
from fastdeploy.model_executor.layers.linear import (
|
||||
MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear)
|
||||
MergedColumnParallelLinear, RowParallelLinear)
|
||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
||||
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
|
||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||
from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class Qwen3MLP(nn.Layer):
|
||||
@@ -49,13 +48,13 @@ class Qwen3MLP(nn.Layer):
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
||||
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
fd_config,
|
||||
prefix=f"{prefix}.up_gate_proj",
|
||||
input_size=fd_config.model_config.hidden_size,
|
||||
output_size=fd_config.model_config.ffn_hidden_size * 2,
|
||||
output_size=fd_config.model_config.intermediate_size * 2,
|
||||
with_bias=False,
|
||||
activation=fd_config.model_config.hidden_act,
|
||||
)
|
||||
@@ -63,7 +62,7 @@ class Qwen3MLP(nn.Layer):
|
||||
self.down_proj = RowParallelLinear(
|
||||
fd_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
input_size=fd_config.model_config.ffn_hidden_size,
|
||||
input_size=fd_config.model_config.intermediate_size,
|
||||
output_size=fd_config.model_config.hidden_size,
|
||||
with_bias=False,
|
||||
)
|
||||
@@ -115,14 +114,14 @@ class Qwen3DecoderLayer(nn.Layer):
|
||||
f"{prefix}.mlp.experts.{{}}.down_proj.weight",
|
||||
}
|
||||
|
||||
if (fd_config.moe_config.num_experts is not None
|
||||
and layer_id >= fd_config.moe_config.moe_layer_start_index):
|
||||
if (fd_config.model_config.moe_num_experts is not None
|
||||
and layer_id >= fd_config.model_config.moe_layer_start_index):
|
||||
|
||||
self.mlp = FusedMoE(fd_config,
|
||||
moe_intermediate_size=fd_config.moe_config.
|
||||
moe_intermediate_size=fd_config.model_config.
|
||||
moe_intermediate_size,
|
||||
num_experts=fd_config.moe_config.num_experts,
|
||||
top_k=fd_config.moe_config.top_k,
|
||||
num_experts=fd_config.model_config.moe_num_experts,
|
||||
top_k=fd_config.model_config.moe_topk,
|
||||
layer_idx=layer_id,
|
||||
weight_key_map=weight_key_map)
|
||||
else:
|
||||
@@ -199,21 +198,21 @@ class Qwen3MoeModel(nn.Layer):
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.num_layers = fd_config.model_config.num_layers
|
||||
fd_config.model_config.prefix_name = "model"
|
||||
self.num_layers = fd_config.model_config.num_hidden_layers
|
||||
fd_config.model_config.pretrained_config.prefix_name = "model"
|
||||
|
||||
self.embeddings = VocabParallelEmbedding(
|
||||
fd_config,
|
||||
num_embeddings=fd_config.model_config.vocab_size,
|
||||
embedding_dim=fd_config.model_config.hidden_size,
|
||||
params_dtype=paddle.get_default_dtype,
|
||||
prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
|
||||
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
||||
)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
Qwen3DecoderLayer(
|
||||
fd_config,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}")
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
@@ -221,7 +220,7 @@ class Qwen3MoeModel(nn.Layer):
|
||||
fd_config,
|
||||
hidden_size=fd_config.model_config.hidden_size,
|
||||
eps=1e-6,
|
||||
prefix=f"{fd_config.model_config.prefix_name}.norm",
|
||||
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
@@ -338,7 +337,7 @@ class Qwen3MoePretrainedModel(PretrainedModel):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
|
||||
def _get_tensor_parallel_mappings(cls, config, is_split=True):
|
||||
# TODO not support TP split now, next PR will support TP.
|
||||
|
||||
from paddleformers.transformers.conversion_utils import \
|
||||
@@ -351,7 +350,7 @@ class Qwen3MoePretrainedModel(PretrainedModel):
|
||||
num_attention_heads=config.num_attention_heads,
|
||||
)
|
||||
|
||||
def get_tensor_parallel_split_mappings(num_layers, moe_num_experts):
|
||||
def get_tensor_parallel_split_mappings(num_layers, num_experts):
|
||||
final_actions = {}
|
||||
|
||||
base_actions = {
|
||||
@@ -402,23 +401,23 @@ class Qwen3MoePretrainedModel(PretrainedModel):
|
||||
for key, action in base_actions.items():
|
||||
for i in range(num_layers):
|
||||
newkey = key.replace("layers.0.", f"layers.{i}.")
|
||||
for j in range(moe_num_experts):
|
||||
for j in range(num_experts):
|
||||
newkey2 = newkey.replace("experts.0.", f"experts.{j}.")
|
||||
final_actions[newkey2] = action
|
||||
|
||||
return final_actions
|
||||
|
||||
moe_num_experts = 0
|
||||
num_experts = 0
|
||||
if isinstance(config.moe_num_experts, list):
|
||||
moe_num_experts = sum(config.moe_num_experts)
|
||||
num_experts = sum(config.moe_num_experts)
|
||||
elif isinstance(config.moe_num_experts, int):
|
||||
moe_num_experts = config.moe_num_experts
|
||||
num_experts = config.moe_num_experts
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Not support type of moe_num_experts [{type(config.moe_num_experts)}]"
|
||||
f"Not support type of num_experts [{type(config.moe_num_experts)}]"
|
||||
)
|
||||
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_layers,
|
||||
moe_num_experts)
|
||||
mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers,
|
||||
num_experts)
|
||||
|
||||
return mappings
|
||||
|
@@ -36,10 +36,9 @@ def check_tensor_parallel_prerequisites(
|
||||
safetensor_keys: List[str],
|
||||
) -> None:
|
||||
"""check_tensor_parallel_prerequisites"""
|
||||
if fd_config.parallel_config.tensor_parallel_degree > 1:
|
||||
if fd_config.parallel_config.tensor_parallel_size > 1:
|
||||
tensor_parallel_map = cls._get_tensor_parallel_mappings(
|
||||
fd_config.model_config, is_split=True
|
||||
)
|
||||
fd_config.model_config.pretrained_config, is_split=True)
|
||||
if not tensor_parallel_map:
|
||||
logger.error(
|
||||
"filtered_quant_map should not be empty. \
|
||||
|
@@ -165,7 +165,7 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.gate.weight"
|
||||
|
||||
if self.fd_config.moe_config.moe_use_aux_free:
|
||||
if self.fd_config.model_config.moe_use_aux_free:
|
||||
infer_to_train[f"{infer_base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
|
||||
f"{train_base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
|
||||
|
||||
@@ -178,7 +178,7 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
|
||||
f"{train_base_name}.{layer_idx}.mlp.shared_experts.down_proj.weight"
|
||||
|
||||
# MoE experts mappings
|
||||
for expert_idx in range(self.fd_config.moe_config.num_experts):
|
||||
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
|
||||
for ph in place_holders:
|
||||
# FFN1 (up_gate_proj)
|
||||
ffn1_key = f"{infer_base_name}.{layer_idx}.mlp.fused_moe.moe_ffn1_weight"
|
||||
@@ -198,12 +198,12 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
|
||||
|
||||
# Process non-MoE layers
|
||||
for layer_idx in range(
|
||||
self.fd_config.moe_config.moe_layer_start_index):
|
||||
self.fd_config.model_config.moe_layer_start_index):
|
||||
_add_layer_mappings(layer_idx, is_moe_layer=False)
|
||||
|
||||
# Process MoE layers
|
||||
for layer_idx in range(self.fd_config.moe_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_layers):
|
||||
for layer_idx in range(self.fd_config.model_config.moe_layer_start_index,
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
_add_layer_mappings(layer_idx, is_moe_layer=True)
|
||||
|
||||
return infer_to_train
|
||||
@@ -278,7 +278,7 @@ class Qwen2ForCausalLMRL(Qwen2ForCausalLM):
|
||||
f"{train_base_name}.{layer_idx}.mlp.down_proj.{ph}"
|
||||
|
||||
for layer_idx in range(
|
||||
self.fd_config.model_config.num_layers):
|
||||
self.fd_config.model_config.num_hidden_layers):
|
||||
_add_layer_mappings(layer_idx)
|
||||
|
||||
return infer_to_train
|
||||
@@ -396,7 +396,7 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
|
||||
)
|
||||
|
||||
# Process MoE layers
|
||||
for layer_idx in range(self.fd_config.model_config.num_layers):
|
||||
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
|
||||
_add_layer_mappings(layer_idx, is_moe_layer=True)
|
||||
|
||||
return infer_to_train
|
||||
|
@@ -21,6 +21,7 @@ import numpy as np
|
||||
import paddle
|
||||
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
from fastdeploy.model_executor.layers.attention import get_attention_backend
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
|
||||
AttentionBackend
|
||||
@@ -36,7 +37,6 @@ from fastdeploy.model_executor.ops.gpu import (draft_model_postprocess,
|
||||
share_external_data)
|
||||
from fastdeploy.model_executor.pre_and_post_process import (pre_process,
|
||||
rebuild_padding)
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
||||
|
||||
from .base import Proposer
|
||||
|
||||
@@ -49,7 +49,7 @@ class MTPProposer(Proposer):
|
||||
def __init__(self, cfg, main_model, local_rank, device_id,
|
||||
main_model_inputs):
|
||||
super().__init__(cfg)
|
||||
self.num_main_model_layers = self.model_config.num_layers
|
||||
self.num_main_model_layers = self.model_config.num_hidden_layers
|
||||
self.local_rank = local_rank
|
||||
self.device_id = device_id
|
||||
self._update_cfg(main_model)
|
||||
@@ -70,10 +70,10 @@ class MTPProposer(Proposer):
|
||||
"""
|
||||
self.model_config.architectures[0] = "Ernie4_5_MTPForCausalLM"
|
||||
self.speculative_config.sharing_model = main_model
|
||||
self.model_config.num_layers = 1
|
||||
self.model_config.num_hidden_layers = 1
|
||||
self.parallel_config.model_name_or_path = (
|
||||
self.speculative_config.model_name_or_path)
|
||||
self.model_config.prefix_name = "ernie.mtp_block"
|
||||
self.model_config.pretrained_config.prefix_name = "ernie.mtp_block"
|
||||
if self.speculative_config.quantization != "":
|
||||
self.model_config.quantization = (
|
||||
self.speculative_config.quantization)
|
||||
@@ -145,7 +145,7 @@ class MTPProposer(Proposer):
|
||||
cache_kvs_list = []
|
||||
for i in range(
|
||||
self.num_main_model_layers,
|
||||
self.num_main_model_layers + self.model_config.num_layers):
|
||||
self.num_main_model_layers + self.model_config.num_hidden_layers):
|
||||
key_cache = paddle.empty(shape=[], dtype=cache_type)
|
||||
key_cache_name = f"key_caches_{i}_rank{self.local_rank}.device{self.device_id}"
|
||||
val_cache_name = f"value_caches_{i}_rank{self.local_rank}.device{self.device_id}"
|
||||
@@ -159,7 +159,7 @@ class MTPProposer(Proposer):
|
||||
|
||||
self.model_inputs["caches"] = cache_kvs_list
|
||||
else:
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
self.cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=kv_cache_shape,
|
||||
fill_value=0,
|
||||
@@ -183,10 +183,10 @@ class MTPProposer(Proposer):
|
||||
|
||||
# TODO(gongshaotian): Get rank from config
|
||||
num_heads = (self.model_config.num_attention_heads //
|
||||
self.parallel_config.tensor_parallel_degree)
|
||||
self.parallel_config.tensor_parallel_size)
|
||||
self.model_config.kv_num_heads = (
|
||||
int(self.model_config.num_key_value_heads) //
|
||||
self.parallel_config.tensor_parallel_degree)
|
||||
self.parallel_config.tensor_parallel_size)
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
# Get the attention backend
|
||||
@@ -608,7 +608,7 @@ class MTPProposer(Proposer):
|
||||
self.model_inputs,
|
||||
)
|
||||
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampled_token_ids, 0)
|
||||
|
||||
self._post_process(sampled_token_ids)
|
||||
|
@@ -670,7 +670,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
# Get kv cache shape
|
||||
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
|
||||
max_num_blocks=max_block_num)
|
||||
# local_rank = self.local_rank % self.parallel_config.tensor_parallel_degree
|
||||
# local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
|
||||
|
||||
if not self.parallel_config.do_profile and (
|
||||
self.parallel_config.enable_prefix_caching \
|
||||
@@ -679,7 +679,7 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
"prefix_caching is not support by GCUModelRunner."
|
||||
)
|
||||
else:
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
|
||||
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=kv_cache_shape,
|
||||
@@ -701,10 +701,10 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
"""
|
||||
assert len(self.attn_backends) == 0
|
||||
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = int(
|
||||
self.model_config.num_key_value_heads
|
||||
) // self.parallel_config.tensor_parallel_degree
|
||||
) // self.parallel_config.tensor_parallel_size
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
# Get the attention backend
|
||||
@@ -783,14 +783,14 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
sampler_output = self.sampler(logits,
|
||||
self.sampling_metadata)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len,
|
||||
self.share_inputs)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(
|
||||
@@ -1016,14 +1016,14 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
self.sampling_metadata,
|
||||
skip_idx_list,
|
||||
)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len, self.share_inputs)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(self.share_inputs["accept_num"],
|
||||
@@ -1192,11 +1192,11 @@ class GCUModelRunner(ModelRunnerBase):
|
||||
byte_of_dtype = 2
|
||||
|
||||
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
|
||||
num_layers = self.model_config.num_layers + \
|
||||
num_layers = self.model_config.num_hidden_layers + \
|
||||
self.speculative_config.num_gpu_block_expand_ratio if \
|
||||
self.speculative_method in [
|
||||
"mtp"
|
||||
] else self.model_config.num_layers
|
||||
] else self.model_config.num_hidden_layers
|
||||
required_memory = (
|
||||
byte_of_dtype * 2 * # k + v
|
||||
(self.parallel_config.block_size * hidden_dim) * num_layers)
|
||||
|
@@ -259,7 +259,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["min_dec_len"][idx:idx + 1] = request.get(
|
||||
"min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx:idx + 1] = request.get(
|
||||
"max_tokens", self.model_config.max_length)
|
||||
"max_tokens", self.model_config.max_model_len)
|
||||
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
||||
|
||||
self.share_inputs["first_token_ids"][
|
||||
@@ -375,11 +375,11 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["min_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
||||
self.share_inputs["max_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype='int64')
|
||||
self.share_inputs["min_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
||||
self.share_inputs["max_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype='int64')
|
||||
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs,
|
||||
0,
|
||||
dtype='int32')
|
||||
@@ -666,13 +666,13 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
# Get kv cache shape
|
||||
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
|
||||
max_num_blocks=max_block_num)
|
||||
local_rank = self.local_rank % self.parallel_config.tensor_parallel_degree
|
||||
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
|
||||
|
||||
if not self.parallel_config.do_profile and (
|
||||
self.parallel_config.enable_prefix_caching \
|
||||
or self.parallel_config.splitwise_role != "mixed"):
|
||||
cache_kvs_list = []
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
key_cache = paddle.empty(shape=[], dtype=cache_type)
|
||||
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
|
||||
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
|
||||
@@ -687,7 +687,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["caches"] = cache_kvs_list
|
||||
|
||||
else:
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
|
||||
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=kv_cache_shape,
|
||||
@@ -710,10 +710,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
"""
|
||||
assert len(self.attn_backends) == 0
|
||||
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = max(1, int(
|
||||
self.model_config.num_key_value_heads
|
||||
) // self.parallel_config.tensor_parallel_degree)
|
||||
) // self.parallel_config.tensor_parallel_size)
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
# Get the attention backend
|
||||
@@ -787,14 +787,14 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
sampler_output = self.sampler(logits,
|
||||
self.sampling_metadata)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len,
|
||||
self.share_inputs)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(
|
||||
@@ -1021,14 +1021,14 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.sampling_metadata,
|
||||
skip_idx_list,
|
||||
)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len, self.share_inputs)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(self.share_inputs["accept_num"],
|
||||
@@ -1206,11 +1206,11 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
|
||||
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
|
||||
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
|
||||
num_layers = self.model_config.num_layers + \
|
||||
num_layers = self.model_config.num_hidden_layers + \
|
||||
self.speculative_config.num_gpu_block_expand_ratio if \
|
||||
self.speculative_method in [
|
||||
"mtp"
|
||||
] else self.model_config.num_layers
|
||||
] else self.model_config.num_hidden_layers
|
||||
required_memory = (
|
||||
byte_of_dtype * 2 * # k + v
|
||||
(self.parallel_config.block_size * hidden_dim) * num_layers)
|
||||
|
@@ -648,7 +648,7 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
or self.parallel_config.splitwise_role != "mixed"):
|
||||
raise NotImplementedError("Iluvatar does not support yet")
|
||||
else:
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
|
||||
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=kv_cache_shape,
|
||||
@@ -672,11 +672,11 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
assert len(self.attn_backends) == 0
|
||||
|
||||
# TODO(gongshaotian): Get rank from config
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = max(
|
||||
1,
|
||||
int(self.model_config.num_key_value_heads) //
|
||||
self.parallel_config.tensor_parallel_degree)
|
||||
self.parallel_config.tensor_parallel_size)
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
# Get the attention backend
|
||||
@@ -748,14 +748,14 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
)
|
||||
sampled_token_ids = self.sampler(logits,
|
||||
self.sampling_metadata)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampled_token_ids, 0)
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len,
|
||||
self.share_inputs)
|
||||
sampled_token_ids = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(
|
||||
@@ -977,14 +977,14 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
self.sampling_metadata,
|
||||
skip_idx_list,
|
||||
)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampled_token_ids, 0)
|
||||
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len, self.share_inputs)
|
||||
sampled_token_ids = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(self.share_inputs["accept_num"],
|
||||
@@ -1145,11 +1145,11 @@ class IluvatarModelRunner(ModelRunnerBase):
|
||||
|
||||
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
|
||||
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
|
||||
num_layers = self.model_config.num_layers + \
|
||||
num_layers = self.model_config.num_hidden_layers + \
|
||||
self.speculative_config.num_gpu_block_expand_ratio if \
|
||||
self.speculative_method in [
|
||||
"mtp"
|
||||
] else self.model_config.num_layers
|
||||
] else self.model_config.num_hidden_layers
|
||||
required_memory = (
|
||||
byte_of_dtype * 2 * # k + v
|
||||
(self.parallel_config.block_size * hidden_dim) * num_layers)
|
||||
|
@@ -29,8 +29,6 @@ from fastdeploy.model_executor.layers.attention import get_attention_backend
|
||||
from fastdeploy.model_executor.layers.rotary_embedding import get_rope_3d
|
||||
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
||||
from fastdeploy.model_executor.layers.sample.sampler import Sampler
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.configuration import \
|
||||
Ernie4_5_VLMoeConfig
|
||||
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import \
|
||||
ScatterOp
|
||||
from fastdeploy.platforms import current_platform
|
||||
@@ -221,9 +219,9 @@ class GPUVLModelRunner(VLModelRunnerBase):
|
||||
fd_config = initialize_fd_config(
|
||||
self.args, self.tensor_parallel_degree, self.tensor_parallel_rank
|
||||
)
|
||||
fd_config.model_config = Ernie4_5_VLMoeConfig(
|
||||
**fd_config.model_config.__dict__
|
||||
)
|
||||
fd_config.model_config.tensor_parallel_degree=self.tensor_parallel_degree
|
||||
fd_config.model_config.tensor_parallel_rank=self.tensor_parallel_rank
|
||||
fd_config.model_config.moe_group="dummy"
|
||||
fd_config.parallel_config.column_cut = False
|
||||
vision_config = fd_config.model_config.vision_config
|
||||
vision_config.attn_sep = False
|
||||
@@ -237,8 +235,8 @@ class GPUVLModelRunner(VLModelRunnerBase):
|
||||
fd_config.model_config.think_end_id = tokenizer.get_vocab()["</think>"]
|
||||
fd_config.model_config.max_text_id = fd_config.model_config.im_patch_id
|
||||
fd_config.model_config.sequence_parallel = False
|
||||
# TODO (bukejiyu): Remove the assignment
|
||||
fd_config.moe_config.top_k = 8
|
||||
# TODO(YuanRisheng) The moe_k in develop is fixed to 8, need to be changed according to json config
|
||||
fd_config.model_config.moe_k = 8
|
||||
self.fd_config = fd_config
|
||||
self.model_cfg = self.fd_config.model_config
|
||||
self.image_preprocess = self._init_image_preprocess(
|
||||
@@ -250,10 +248,10 @@ class GPUVLModelRunner(VLModelRunnerBase):
|
||||
self.model = get_model_from_loader(self.fd_config)
|
||||
attn_backend_cls = get_attention_backend()
|
||||
num_heads = self.fd_config.model_config.num_attention_heads // \
|
||||
self.fd_config.parallel_config.tensor_parallel_degree
|
||||
self.fd_config.parallel_config.tensor_parallel_size
|
||||
self.fd_config.model_config.kv_num_heads = int(
|
||||
self.fd_config.model_config.num_key_value_heads
|
||||
) // self.fd_config.parallel_config.tensor_parallel_degree
|
||||
) // self.fd_config.parallel_config.tensor_parallel_size
|
||||
head_dim = self.fd_config.model_config.head_dim
|
||||
self.attn_backend = attn_backend_cls(
|
||||
self.fd_config,
|
||||
@@ -305,14 +303,10 @@ class GPUVLModelRunner(VLModelRunnerBase):
|
||||
"""
|
||||
cache_kvs = {}
|
||||
total_block_num = self.num_gpu_blocks
|
||||
num_layers = self.model_cfg.get("num_layers",
|
||||
None) or self.model_cfg.get(
|
||||
"num_hidden_layers", None)
|
||||
num_layers = self.model_cfg.num_hidden_layers
|
||||
|
||||
kv_num_head = self.model_cfg.num_key_value_heads if self.model_cfg.num_key_value_heads != -1 else self.model_cfg.num_attention_heads
|
||||
|
||||
kv_num_head = self.model_cfg.get(
|
||||
"num_key_value_heads",
|
||||
self.model_cfg.num_attention_heads,
|
||||
)
|
||||
kv_num_head = kv_num_head // self.tensor_parallel_degree
|
||||
self.model_cfg.kv_num_head = kv_num_head
|
||||
|
||||
@@ -647,7 +641,7 @@ class GPUVLModelRunner(VLModelRunnerBase):
|
||||
)
|
||||
# sampler & save_output
|
||||
sampler_output = self.sampler(logits, self.sampling_metadata)
|
||||
if self.fd_config.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.fd_config.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
self.post_process(sampler_output)
|
||||
|
||||
@@ -740,9 +734,7 @@ class GPUVLModelRunner(VLModelRunnerBase):
|
||||
"""
|
||||
Calculate the size of kvcache for computational theory
|
||||
"""
|
||||
num_layers = self.model_cfg.get("num_layers",
|
||||
None) or self.model_cfg.get(
|
||||
"num_hidden_layers", None)
|
||||
num_layers = self.model_cfg.num_hidden_layers
|
||||
byte_of_cache = 2
|
||||
# support c8 c4
|
||||
|
||||
|
@@ -22,11 +22,9 @@ import paddle
|
||||
import paddle.distributed as dist
|
||||
import paddle.distributed.fleet as fleet
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.config import (DecodingConfig, DeviceConfig, FDConfig,
|
||||
GraphOptimizationConfig, LoadConfig,
|
||||
ModelConfig, MoEConfig, MoEPhase,
|
||||
ParallelConfig, SpeculativeConfig)
|
||||
ModelConfig, ParallelConfig, SpeculativeConfig)
|
||||
from fastdeploy.inter_communicator import EngineWorkerQueue as TaskQueue
|
||||
from fastdeploy.inter_communicator import IPCSignal
|
||||
from fastdeploy.model_executor.layers.quantization import \
|
||||
@@ -122,7 +120,7 @@ class PaddleDisWorkerProc():
|
||||
self.task_queue = TaskQueue(
|
||||
address=task_address,
|
||||
is_server=False,
|
||||
num_client=self.parallel_config.tensor_parallel_degree,
|
||||
num_client=self.parallel_config.tensor_parallel_size,
|
||||
client_id=self.parallel_config.tensor_parallel_rank,
|
||||
local_data_parallel_id=self.parallel_config.expert_parallel_rank)
|
||||
|
||||
@@ -139,8 +137,8 @@ class PaddleDisWorkerProc():
|
||||
# init worker_ready_signal
|
||||
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
|
||||
array_size = min(
|
||||
max_chips_per_node, self.parallel_config.tensor_parallel_degree *
|
||||
self.parallel_config.expert_parallel_degree)
|
||||
max_chips_per_node, self.parallel_config.tensor_parallel_size *
|
||||
self.parallel_config.expert_parallel_size)
|
||||
workers_ready = np.zeros(shape=[array_size], dtype=np.int32)
|
||||
self.worker_ready_signal = IPCSignal(
|
||||
name="worker_ready_signal",
|
||||
@@ -173,7 +171,7 @@ class PaddleDisWorkerProc():
|
||||
|
||||
# init exist_task_signal
|
||||
workers_exist_task = np.zeros(
|
||||
[self.parallel_config.expert_parallel_degree], dtype=np.int32)
|
||||
[self.parallel_config.expert_parallel_size], dtype=np.int32)
|
||||
self.exist_task_signal = IPCSignal(
|
||||
name="exist_task_signal",
|
||||
array=workers_exist_task,
|
||||
@@ -183,7 +181,7 @@ class PaddleDisWorkerProc():
|
||||
|
||||
# init exist_swapped_task_signal
|
||||
workers_swapped_task = np.zeros(
|
||||
shape=[self.parallel_config.expert_parallel_degree],
|
||||
shape=[self.parallel_config.expert_parallel_size],
|
||||
dtype=np.int32)
|
||||
self.exist_swapped_task_signal = IPCSignal(
|
||||
name="exist_swapped_task_signal",
|
||||
@@ -231,8 +229,8 @@ class PaddleDisWorkerProc():
|
||||
TODO(gongshaotian): support remote calling of functions that control worker.
|
||||
"""
|
||||
# Currently, only support single node
|
||||
self.nnode = int((self.parallel_config.tensor_parallel_degree + 7) // 8)
|
||||
mp_num_per_node = self.parallel_config.tensor_parallel_degree // self.nnode
|
||||
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
|
||||
mp_num_per_node = self.parallel_config.tensor_parallel_size // self.nnode
|
||||
req_ids = []
|
||||
while True:
|
||||
if self.local_rank == 0:
|
||||
@@ -241,7 +239,7 @@ class PaddleDisWorkerProc():
|
||||
else:
|
||||
self.exist_task_signal.value[0] = 0
|
||||
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
# Synchronize before updating weights
|
||||
paddle.distributed.barrier()
|
||||
|
||||
@@ -259,7 +257,7 @@ class PaddleDisWorkerProc():
|
||||
self.fd_config.parallel_config.
|
||||
expert_parallel_rank] = 1
|
||||
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
# Synchronize the signal for other workers
|
||||
# TODO(@wufeisheng): Split TP group and EP group
|
||||
paddle.distributed.barrier()
|
||||
@@ -479,8 +477,8 @@ def parse_args():
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speculative_benchmark_mode",
|
||||
default="false",
|
||||
type=str,
|
||||
default=False,
|
||||
type=bool,
|
||||
)
|
||||
parser.add_argument("--max_num_batched_tokens",
|
||||
type=int,
|
||||
@@ -559,7 +557,7 @@ def parse_args():
|
||||
return args
|
||||
|
||||
|
||||
def initialize_fd_config(config_or_args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
|
||||
def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
|
||||
"""Initialize FDConfig from either RolloutModelConfig or argparse.Namespace
|
||||
|
||||
Args:
|
||||
@@ -568,196 +566,37 @@ def initialize_fd_config(config_or_args, ranks: int = 1, local_rank: int = 0) ->
|
||||
Returns:
|
||||
FDConfig: Initialized FastDeploy configuration object
|
||||
"""
|
||||
# Get model config from model directory
|
||||
model_config_dict, _ = ModelConfig.get_config_dict(config_or_args.model_name_or_path)
|
||||
|
||||
# Handle MoE related configs
|
||||
if 'num_experts' in model_config_dict:
|
||||
model_config_dict['moe_num_experts'] = model_config_dict.pop('num_experts')
|
||||
if 'num_experts_per_tok' in model_config_dict:
|
||||
model_config_dict['moe_topk'] = model_config_dict.pop('num_experts_per_tok')
|
||||
|
||||
# Set default values for model config
|
||||
model_config_dict["head_dim"] = model_config_dict.get(
|
||||
"head_dim", model_config_dict["hidden_size"] // model_config_dict["num_attention_heads"])
|
||||
model_config_dict["rope_theta"] = model_config_dict.get("rope_theta", 10000.0)
|
||||
|
||||
# Create model config object
|
||||
model_config = ModelConfig.from_dict(model_config_dict)
|
||||
model_config.head_dim = model_config_dict["head_dim"]
|
||||
paddle.set_default_dtype(config_or_args.dtype)
|
||||
if 'tie_word_embeddings' in model_config_dict:
|
||||
model_config.tie_word_embeddings = model_config_dict['tie_word_embeddings']
|
||||
|
||||
# Initialize all config components
|
||||
device_config = DeviceConfig()
|
||||
decoding_config = DecodingConfig()
|
||||
speculative_config = SpeculativeConfig()
|
||||
parallel_config = ParallelConfig()
|
||||
load_config = LoadConfig()
|
||||
moe_config = MoEConfig()
|
||||
|
||||
# Handle graph optimization config (check for attribute existence for backward compatibility)
|
||||
enable_static_graph_inference = getattr(config_or_args, 'enable_static_graph_inference', False)
|
||||
use_cudagraph = getattr(config_or_args, 'use_cudagraph', False)
|
||||
max_capture_batch_size = getattr(config_or_args, 'max_capture_batch_size', 0)
|
||||
paddle.set_default_dtype(args.dtype)
|
||||
model_config = ModelConfig(vars(args))
|
||||
device_config = DeviceConfig(vars(args))
|
||||
decoding_config = DecodingConfig(vars(args))
|
||||
speculative_config = SpeculativeConfig(vars(args))
|
||||
parallel_config = ParallelConfig(vars(args))
|
||||
load_config = LoadConfig(vars(args))
|
||||
|
||||
graph_opt_config = GraphOptimizationConfig(
|
||||
enable_static_graph_inference,
|
||||
use_cudagraph,
|
||||
max_capture_batch_size
|
||||
)
|
||||
args.enable_static_graph_inference,
|
||||
args.max_capture_batch_size,
|
||||
vars(args))
|
||||
|
||||
# Handle quantization (check for attribute existence)
|
||||
model_config.quantization = getattr(config_or_args, 'quantization', None)
|
||||
# Note(tangbinhan): used for load_checkpoint
|
||||
model_config.pretrained_config.tensor_parallel_rank = parallel_config.tensor_parallel_rank
|
||||
model_config.pretrained_config.tensor_parallel_degree = parallel_config.tensor_parallel_size
|
||||
model_config.pretrained_config.is_mtp = False
|
||||
model_config.pretrained_config.head_dim = model_config.head_dim
|
||||
|
||||
# Update speculative config_or_args
|
||||
speculative_config.method = getattr(config_or_args, 'speculative_method', None)
|
||||
speculative_config.num_speculative_tokens = getattr(config_or_args, 'speculative_max_draft_token_num', 0)
|
||||
speculative_config.model_name_or_path = getattr(config_or_args, 'speculative_model_name_or_path', None)
|
||||
speculative_config.quantization = getattr(config_or_args, 'speculative_model_quantization', None)
|
||||
speculative_config.benchmark_mode = (
|
||||
getattr(config_or_args, "speculative_benchmark_mode", "false").lower() == "true"
|
||||
)
|
||||
|
||||
# Update parallel config
|
||||
parallel_config.engine_pid = getattr(config_or_args, 'engine_pid', None)
|
||||
parallel_config.model_name_or_path = config_or_args.model_name_or_path
|
||||
parallel_config.max_num_seqs = getattr(config_or_args, 'max_num_seqs', 0)
|
||||
parallel_config.max_block_num = getattr(config_or_args, 'total_block_num', 0)
|
||||
parallel_config.block_size = getattr(config_or_args, 'block_size', 64)
|
||||
parallel_config.pod_ip = getattr(config_or_args, 'pod_ip', None)
|
||||
parallel_config.engine_worker_queue_port = getattr(config_or_args, 'engine_worker_queue_port', 0)
|
||||
parallel_config.max_model_len = getattr(config_or_args, 'max_model_len', 0)
|
||||
model_config.max_seq_len = getattr(config_or_args, 'max_model_len', 0)
|
||||
model_config.max_length = getattr(config_or_args, 'max_model_len', 0)
|
||||
parallel_config.device_ids = getattr(config_or_args, 'device_ids', [])
|
||||
parallel_config.dtype = config_or_args.dtype
|
||||
parallel_config.enc_dec_block_num = getattr(config_or_args, 'enc_dec_block_num', 0)
|
||||
parallel_config.kv_cache_ratio = getattr(config_or_args, 'kv_cache_ratio', 1.0)
|
||||
parallel_config.first_token_id = getattr(config_or_args, 'first_token_id', None)
|
||||
parallel_config.gpu_memory_utilization = getattr(config_or_args, 'gpu_memory_utilization', 0.9)
|
||||
parallel_config.do_profile = getattr(config_or_args, 'do_profile', False)
|
||||
parallel_config.dynamic_load_weight = getattr(config_or_args, 'dynamic_load_weight', False)
|
||||
parallel_config.pad_token_id = getattr(config_or_args, 'pad_token_id', None)
|
||||
parallel_config.eos_tokens_lens = getattr(config_or_args, 'eos_tokens_lens', 0)
|
||||
parallel_config.enable_chunked_prefill = getattr(config_or_args, 'enable_chunked_prefill', False)
|
||||
parallel_config.max_num_batched_tokens = getattr(config_or_args, 'max_num_batched_tokens', 0)
|
||||
parallel_config.enable_prefix_caching = getattr(config_or_args, 'enable_prefix_caching', False)
|
||||
parallel_config.enable_custom_all_reduce = getattr(config_or_args, 'enable_custom_all_reduce', False)
|
||||
parallel_config.use_ep = getattr(config_or_args, 'enable_expert_parallell', False)
|
||||
parallel_config.tensor_parallel_degree = getattr(config_or_args, 'tensor_parallel_size', 1)
|
||||
parallel_config.expert_parallel_degree = getattr(config_or_args, 'expert_parallel_size', 1)
|
||||
parallel_config.splitwise_role = getattr(config_or_args, 'splitwise_role', None)
|
||||
parallel_config.guided_decoding_backend = getattr(config_or_args, 'guided_decoding_backend', None)
|
||||
parallel_config.disable_any_whitespace = getattr(config_or_args, 'disable_any_whitespace', False)
|
||||
|
||||
# Log parallel config info
|
||||
logger.info(f"parallel_config.use_ep {parallel_config.use_ep}")
|
||||
logger.info(f"parallel_config.tensor_parallel_degree {parallel_config.tensor_parallel_degree}")
|
||||
logger.info(f"splitwise_role {parallel_config.splitwise_role}")
|
||||
logger.info(
|
||||
f"parallel_config.tensor_parallel_size {parallel_config.tensor_parallel_size}"
|
||||
)
|
||||
logger.info(
|
||||
f"parallel_config.tensor_parallel_rank {parallel_config.tensor_parallel_rank}"
|
||||
)
|
||||
|
||||
# Set MoE phase based on splitwise role
|
||||
if parallel_config.splitwise_role == "mixed":
|
||||
parallel_config.moe_phase = MoEPhase.PREFILL
|
||||
elif parallel_config.splitwise_role == "prefill":
|
||||
parallel_config.moe_phase = MoEPhase.PREFILL
|
||||
elif parallel_config.splitwise_role == "decode":
|
||||
parallel_config.moe_phase = MoEPhase.DECODER
|
||||
elif parallel_config.splitwise_role is not None:
|
||||
raise NotImplementedError
|
||||
if getattr(model_config, 'num_hidden_layers', None) is None:
|
||||
raise ValueError("num_hidden_layers is None")
|
||||
|
||||
# Handle model architecture specific configurations
|
||||
num_key_value_heads = model_config_dict.get("num_key_value_heads", -1)
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = -1
|
||||
|
||||
# Calculate FFN hidden size
|
||||
if model_config_dict.get("ffn_hidden_size", None) is not None:
|
||||
ffn_hidden_size = model_config_dict["ffn_hidden_size"]
|
||||
elif model_config_dict.get("intermediate_size", None) is not None:
|
||||
ffn_hidden_size = model_config_dict["intermediate_size"]
|
||||
else:
|
||||
ffn_hidden_size = 4 * model_config_dict["hidden_size"]
|
||||
if model_config_dict["hidden_act"].lower() == "swiglu":
|
||||
if paddle.distributed.get_world_size() > 1:
|
||||
multiple_of = 8 * model_config_dict["num_attention_heads"]
|
||||
else:
|
||||
multiple_of = 4 * model_config_dict["num_attention_heads"]
|
||||
ffn_hidden_size = multiple_of * (
|
||||
(int(2 * ffn_hidden_size / 3) + multiple_of - 1) //
|
||||
multiple_of)
|
||||
|
||||
# Get number of layers
|
||||
num_layers = model_config_dict.get("num_layers", None) or model_config_dict.get(
|
||||
"num_hidden_layers", None)
|
||||
if num_layers is None:
|
||||
raise ValueError(f"num_layers<{num_layers}> is invalid")
|
||||
|
||||
if "moe_layer_start_index" in model_config_dict:
|
||||
moe_layer_start_index = model_config_dict["moe_layer_start_index"]
|
||||
use_moe = (
|
||||
isinstance(moe_layer_start_index, int)
|
||||
and moe_layer_start_index < num_layers
|
||||
) or (
|
||||
isinstance(moe_layer_start_index, list)
|
||||
and min(moe_layer_start_index) < num_layers
|
||||
)
|
||||
else:
|
||||
use_moe = False
|
||||
|
||||
# Update model config
|
||||
model_config.ffn_hidden_size = ffn_hidden_size
|
||||
model_config.num_layers = num_layers
|
||||
model_config.num_key_value_heads = num_key_value_heads
|
||||
model_config.start_layer_index = model_config_dict.get("start_layer_index", 0)
|
||||
|
||||
# Update MoE config
|
||||
moe_config.num_experts = model_config_dict.get("moe_num_experts", None)
|
||||
moe_config.moe_intermediate_size = model_config_dict.get("moe_intermediate_size", None)
|
||||
moe_config.top_k = model_config_dict.get("moe_k", model_config_dict.get("moe_topk", 8))
|
||||
moe_config.moe_num_shared_experts = model_config_dict.get("moe_num_shared_experts", 0)
|
||||
moe_config.moe_layer_start_index = model_config_dict.get("moe_layer_start_index", 0)
|
||||
moe_config.num_max_dispatch_tokens_per_rank = model_config_dict.get(
|
||||
"num_max_dispatch_tokens_per_rank", 256)
|
||||
moe_config.moe_use_aux_free = model_config_dict.get("moe_use_aux_free", False)
|
||||
|
||||
# Handle vocabulary size
|
||||
model_config.ori_vocab_size = model_config_dict.get("vocab_size", -1)
|
||||
archs = model_config_dict.get("architectures", [])
|
||||
if "Ernie4_5_ForCausalLM" in archs or "Ernie4_5_MoeForCausalLM" in archs:
|
||||
model_config.ori_vocab_size = getattr(config_or_args, 'ori_vocab_size', model_config.ori_vocab_size)
|
||||
|
||||
# Handle DeepseekV3 specific config
|
||||
if "DeepseekV3ForCausalLM" in model_config_dict.get("architectures", []):
|
||||
from paddleformers.transformers import AutoConfig
|
||||
model_config.deepseekv3 = AutoConfig.from_pretrained(
|
||||
config_or_args.model_name_or_path)
|
||||
|
||||
assert parallel_config.tensor_parallel_degree * parallel_config.expert_parallel_degree == ranks
|
||||
|
||||
parallel_config.tensor_parallel_rank = \
|
||||
local_rank % parallel_config.tensor_parallel_degree
|
||||
parallel_config.expert_parallel_rank = \
|
||||
int(local_rank / parallel_config.tensor_parallel_degree)
|
||||
|
||||
if parallel_config.use_ep:
|
||||
moe_config.num_experts_per_rank = \
|
||||
moe_config.num_experts // parallel_config.expert_parallel_degree
|
||||
moe_config.num_experts_start_offset = \
|
||||
parallel_config.expert_parallel_rank * moe_config.num_experts_per_rank
|
||||
|
||||
# For auto TP split
|
||||
model_config.tensor_parallel_degree = parallel_config.tensor_parallel_degree
|
||||
model_config.tensor_parallel_rank = parallel_config.tensor_parallel_rank
|
||||
model_config.use_ep = parallel_config.use_ep
|
||||
|
||||
if parallel_config.use_ep:
|
||||
model_config.num_experts_per_rank = moe_config.num_experts_per_rank
|
||||
model_config.num_experts_start_offset = moe_config.num_experts_start_offset
|
||||
|
||||
# Handle quantization config
|
||||
quantization_config = model_config_dict.get("quantization_config", None)
|
||||
quantization_config = model_config.quantization_config
|
||||
if not model_config.is_quantized:
|
||||
if quantization_config is not None:
|
||||
if "kv_cache_quant_type" not in quantization_config:
|
||||
@@ -772,16 +611,15 @@ def initialize_fd_config(config_or_args, ranks: int = 1, local_rank: int = 0) ->
|
||||
|
||||
if quantization_config is not None:
|
||||
quant_config_name = quantization_config["quantization"]
|
||||
elif getattr(config_or_args, 'quantization', None) != "None":
|
||||
elif args.quantization != "None":
|
||||
quantization_config = {}
|
||||
quant_config_name = getattr(config_or_args, 'quantization', None)
|
||||
quant_config_name = args.quantization
|
||||
quantization_config["quantization"] = quant_config_name
|
||||
# Special handling for Ernie models
|
||||
is_ernie = "Ernie4_5_ForCausalLM" in model_config_dict.get("architectures", []) or \
|
||||
"Ernie4_5_MoeForCausalLM" in model_config_dict.get("architectures", []) or \
|
||||
"Ernie4_5_VLMoeForConditionalGeneration" in model_config_dict.get(
|
||||
"architectures", [])
|
||||
if use_moe and quant_config_name == "wint4" and is_ernie:
|
||||
is_ernie = "Ernie4_5_ForCausalLM" in model_config.architectures or \
|
||||
"Ernie4_5_MoeForCausalLM" in model_config.architectures or \
|
||||
"Ernie4_5_VLMoeForConditionalGeneration" in model_config.architectures
|
||||
if quant_config_name == "wint4" and is_ernie:
|
||||
quantization_config["dense_quant_type"] = "wint8"
|
||||
quantization_config["moe_quant_type"] = "wint4"
|
||||
quantization_config["quantization"] = "mix_quant"
|
||||
@@ -806,38 +644,23 @@ def initialize_fd_config(config_or_args, ranks: int = 1, local_rank: int = 0) ->
|
||||
logger.info(
|
||||
"Model Status: Original (will apply online quantization)")
|
||||
|
||||
logger.info(f"Quantization Method: {getattr(config_or_args, 'quantization', 'None')}")
|
||||
logger.info(f"{quantization_config}")
|
||||
else:
|
||||
logger.info(
|
||||
"No quantization config found and use original weight and act dtype."
|
||||
)
|
||||
|
||||
model_config.enable_logprob = config_or_args.enable_logprob
|
||||
|
||||
model_config.architectures = model_config_dict.get("architectures")
|
||||
|
||||
# Update load config
|
||||
logger.info("===========load_config==============")
|
||||
# Handle load config (check for environment variable)
|
||||
load_config.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
|
||||
load_config.dynamic_load_weight = getattr(config_or_args, 'dynamic_load_weight', False)
|
||||
load_config.load_strategy = getattr(config_or_args, 'load_strategy', None)
|
||||
logger.info(f"- Dynamic load weight: {load_config.dynamic_load_weight}")
|
||||
logger.info(f"- Load strategy: {load_config.load_strategy}")
|
||||
logger.info(f"- Use fastsafetensor: {load_config.use_fastsafetensor}")
|
||||
|
||||
# Create and return FDConfig
|
||||
fd_config = FDConfig(
|
||||
model_config=model_config,
|
||||
parallel_config=parallel_config,
|
||||
speculative_config=speculative_config,
|
||||
device_config=device_config,
|
||||
load_config=load_config,
|
||||
moe_config=moe_config,
|
||||
decoding_config=decoding_config,
|
||||
quant_config=quant_config,
|
||||
graph_opt_config=graph_opt_config
|
||||
)
|
||||
fd_config = FDConfig(model_config=model_config,
|
||||
parallel_config=parallel_config,
|
||||
speculative_config=speculative_config,
|
||||
device_config=device_config,
|
||||
load_config=load_config,
|
||||
decoding_config=decoding_config,
|
||||
quant_config=quant_config,
|
||||
graph_opt_config=graph_opt_config)
|
||||
|
||||
return fd_config
|
||||
|
||||
|
@@ -314,7 +314,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
"min_tokens", 1)
|
||||
|
||||
self.share_inputs["max_dec_len"][idx:idx + 1] = request.get(
|
||||
"max_tokens", self.model_config.max_length)
|
||||
"max_tokens", self.model_config.max_model_len)
|
||||
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
||||
|
||||
self.share_inputs["first_token_ids"][
|
||||
@@ -387,11 +387,11 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["min_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
||||
self.share_inputs["max_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype='int64')
|
||||
self.share_inputs["min_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
||||
self.share_inputs["max_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype='int64')
|
||||
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs,
|
||||
0,
|
||||
dtype='int32')
|
||||
@@ -574,7 +574,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
|
||||
max_num_blocks=max_block_num)
|
||||
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=kv_cache_shape,
|
||||
fill_value=0,
|
||||
@@ -597,10 +597,10 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
assert len(self.attn_backends) == 0
|
||||
|
||||
# TODO(gongshaotian): Get rank from config
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = int(
|
||||
self.model_config.num_key_value_heads
|
||||
) // self.parallel_config.tensor_parallel_degree
|
||||
) // self.parallel_config.tensor_parallel_size
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
# Get the attention backend
|
||||
@@ -803,7 +803,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
required_memory = (
|
||||
byte_of_dtype * 2 * # k + v
|
||||
(self.parallel_config.block_size * hidden_dim) *
|
||||
self.model_config.num_layers)
|
||||
self.model_config.num_hidden_layers)
|
||||
return required_memory
|
||||
|
||||
def update_share_input_block_num(self, num_gpu_blocks: int) -> None:
|
||||
|
Reference in New Issue
Block a user