mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
Simplify the Config code (#2770)
* simplify the code * fix vl * delete config * fix * perfect code * fix ci * fix xpu * fix xpu * fix server * resolve conflict * fix mtp * resolve conflict * fix xpu * fix xpu * fix vl * fix log * fix qwen moe * fix qwen moe * fix qwen moe
This commit is contained in:
@@ -259,7 +259,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["min_dec_len"][idx:idx + 1] = request.get(
|
||||
"min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx:idx + 1] = request.get(
|
||||
"max_tokens", self.model_config.max_length)
|
||||
"max_tokens", self.model_config.max_model_len)
|
||||
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
||||
|
||||
self.share_inputs["first_token_ids"][
|
||||
@@ -375,11 +375,11 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["min_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
||||
self.share_inputs["max_dec_len"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype='int64')
|
||||
self.share_inputs["min_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
||||
self.share_inputs["max_length"] = paddle.full(
|
||||
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
||||
[max_num_seqs, 1], self.model_config.max_model_len, dtype='int64')
|
||||
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs,
|
||||
0,
|
||||
dtype='int32')
|
||||
@@ -666,13 +666,13 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
# Get kv cache shape
|
||||
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
|
||||
max_num_blocks=max_block_num)
|
||||
local_rank = self.local_rank % self.parallel_config.tensor_parallel_degree
|
||||
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
|
||||
|
||||
if not self.parallel_config.do_profile and (
|
||||
self.parallel_config.enable_prefix_caching \
|
||||
or self.parallel_config.splitwise_role != "mixed"):
|
||||
cache_kvs_list = []
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
key_cache = paddle.empty(shape=[], dtype=cache_type)
|
||||
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
|
||||
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
|
||||
@@ -687,7 +687,7 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["caches"] = cache_kvs_list
|
||||
|
||||
else:
|
||||
for i in range(self.model_config.num_layers):
|
||||
for i in range(self.model_config.num_hidden_layers):
|
||||
|
||||
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
||||
shape=kv_cache_shape,
|
||||
@@ -710,10 +710,10 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
"""
|
||||
assert len(self.attn_backends) == 0
|
||||
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
||||
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
|
||||
self.model_config.kv_num_heads = max(1, int(
|
||||
self.model_config.num_key_value_heads
|
||||
) // self.parallel_config.tensor_parallel_degree)
|
||||
) // self.parallel_config.tensor_parallel_size)
|
||||
head_dim = self.model_config.head_dim
|
||||
|
||||
# Get the attention backend
|
||||
@@ -787,14 +787,14 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
)
|
||||
sampler_output = self.sampler(logits,
|
||||
self.sampling_metadata)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len,
|
||||
self.share_inputs)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(
|
||||
@@ -1021,14 +1021,14 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
self.sampling_metadata,
|
||||
skip_idx_list,
|
||||
)
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(sampler_output.sampled_token_ids, 0)
|
||||
|
||||
else:
|
||||
self.sampler(logits, self.sampling_metadata,
|
||||
self.parallel_config.max_model_len, self.share_inputs)
|
||||
sampler_output = None
|
||||
if self.parallel_config.tensor_parallel_degree > 1:
|
||||
if self.parallel_config.tensor_parallel_size > 1:
|
||||
paddle.distributed.broadcast(
|
||||
self.share_inputs["accept_tokens"], 0)
|
||||
paddle.distributed.broadcast(self.share_inputs["accept_num"],
|
||||
@@ -1206,11 +1206,11 @@ class GPUModelRunner(ModelRunnerBase):
|
||||
|
||||
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
|
||||
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
|
||||
num_layers = self.model_config.num_layers + \
|
||||
num_layers = self.model_config.num_hidden_layers + \
|
||||
self.speculative_config.num_gpu_block_expand_ratio if \
|
||||
self.speculative_method in [
|
||||
"mtp"
|
||||
] else self.model_config.num_layers
|
||||
] else self.model_config.num_hidden_layers
|
||||
required_memory = (
|
||||
byte_of_dtype * 2 * # k + v
|
||||
(self.parallel_config.block_size * hidden_dim) * num_layers)
|
||||
|
Reference in New Issue
Block a user