Simplify the Config code (#2770)

* simplify the code

* fix vl

* delete config

* fix

* perfect code

* fix ci

* fix xpu

* fix xpu

* fix server

* resolve conflict

* fix mtp

* resolve conflict

* fix xpu

* fix xpu

* fix vl

* fix log

* fix qwen moe

* fix qwen moe

* fix qwen moe
This commit is contained in:
YuanRisheng
2025-07-14 19:50:05 +08:00
committed by GitHub
parent 2e81792d64
commit 4c7b8bc458
34 changed files with 551 additions and 911 deletions

View File

@@ -21,6 +21,7 @@ import numpy as np
import paddle
from fastdeploy.engine.request import Request
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
AttentionBackend
@@ -36,7 +37,6 @@ from fastdeploy.model_executor.ops.gpu import (draft_model_postprocess,
share_external_data)
from fastdeploy.model_executor.pre_and_post_process import (pre_process,
rebuild_padding)
from fastdeploy.model_executor.forward_meta import ForwardMeta
from .base import Proposer
@@ -49,7 +49,7 @@ class MTPProposer(Proposer):
def __init__(self, cfg, main_model, local_rank, device_id,
main_model_inputs):
super().__init__(cfg)
self.num_main_model_layers = self.model_config.num_layers
self.num_main_model_layers = self.model_config.num_hidden_layers
self.local_rank = local_rank
self.device_id = device_id
self._update_cfg(main_model)
@@ -70,10 +70,10 @@ class MTPProposer(Proposer):
"""
self.model_config.architectures[0] = "Ernie4_5_MTPForCausalLM"
self.speculative_config.sharing_model = main_model
self.model_config.num_layers = 1
self.model_config.num_hidden_layers = 1
self.parallel_config.model_name_or_path = (
self.speculative_config.model_name_or_path)
self.model_config.prefix_name = "ernie.mtp_block"
self.model_config.pretrained_config.prefix_name = "ernie.mtp_block"
if self.speculative_config.quantization != "":
self.model_config.quantization = (
self.speculative_config.quantization)
@@ -145,7 +145,7 @@ class MTPProposer(Proposer):
cache_kvs_list = []
for i in range(
self.num_main_model_layers,
self.num_main_model_layers + self.model_config.num_layers):
self.num_main_model_layers + self.model_config.num_hidden_layers):
key_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache_name = f"key_caches_{i}_rank{self.local_rank}.device{self.device_id}"
val_cache_name = f"value_caches_{i}_rank{self.local_rank}.device{self.device_id}"
@@ -159,7 +159,7 @@ class MTPProposer(Proposer):
self.model_inputs["caches"] = cache_kvs_list
else:
for i in range(self.model_config.num_layers):
for i in range(self.model_config.num_hidden_layers):
self.cache_kvs["key_caches_{}".format(i)] = paddle.full(
shape=kv_cache_shape,
fill_value=0,
@@ -183,10 +183,10 @@ class MTPProposer(Proposer):
# TODO(gongshaotian): Get rank from config
num_heads = (self.model_config.num_attention_heads //
self.parallel_config.tensor_parallel_degree)
self.parallel_config.tensor_parallel_size)
self.model_config.kv_num_heads = (
int(self.model_config.num_key_value_heads) //
self.parallel_config.tensor_parallel_degree)
self.parallel_config.tensor_parallel_size)
head_dim = self.model_config.head_dim
# Get the attention backend
@@ -608,7 +608,7 @@ class MTPProposer(Proposer):
self.model_inputs,
)
if self.parallel_config.tensor_parallel_degree > 1:
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(sampled_token_ids, 0)
self._post_process(sampled_token_ids)